243

GASP - An Animation System for Computational
Geometry

David Dobkin and Ayellet Tal
Department of Computer Science
Princeton University
Princeton, NJ 08544
dpd@cs.princeton.edu ayt@cs.princeton.edu

Abstract

This paper describes a system, GASP, that enables the cre-
ation and viewing of animations of geometric algorithms.
GASP facilitates the task of both the programmer and the
viewer. Animations can be based upon either an imple-
mentation of an algorithm or upon ASCII data. System
defaults make it possible for the creator of the animation
to be isolated from decisions of a graphical nature. The
viewer is provided with a comfortable user interface. That
interface enhances the exploration of an algorithm’s func-
tionality and assists in debugging geometric code. We pro-
vide several examples through which we demonstrate the
value of GASP to the computational geometry community.

This paper does not fit the usual “algorithm-theorem-
proof” format typical of a computational geometry paper.
Instead, it describes a system intended to help researchers
implement and experiment with geometric algorithms. Sys-
tems such as the Computational Geometry Workbench,
XYZ GeoBench, and LEDA are immensely valuable tools
providing the programmer with library routines and user
interfaces. Our work follows in their footsteps. However,
it adds an orthogonal dimension to these efforts: GASP’s
primary focus is the animation and visualization of algo-
rithms. Thus, it need not make any assumption about how
the geometric code is produced, whether it be stand-alone
or library-linked. While providing interactive visualization
support, GASP can also be used as a visual debugging fa-
cility. The system has already been used by several re-
searchers to produce animations (and videos) of highly com-
plex algorithms (e.g., optimal segment intersection, polyhe-
dral intersections, max-discrepancy, polyhedral separators).
We are hopeful that this tool will prove as useful to the
computational geometry community —albeit in a different
manner— as Workbench, GeoBench, or LEDA.

1 Introduction

The past decade has seen a remarkable growth in the avail-
ability, speed, and ease of use of computers. The effects on
the computational geometry community have been signifi-
cant. Faster machines and better software have made IATEX
[12], and Postscript [1] the lingua franca of communica-
tion and publication. Higher speed networks coupled with
wider connectivity have made electronic mail the medium
of choice for research communication. However, despite

the visual nature of computational geometry, we have been
less able to take advantage of similar speed gains in graphics
hardware and software. The community has not embraced
the available tools and until recently it was rare to have
visualization as part of a computational geometry paper. In
large part, this was due to the difficulty in using graph-
ics systems combined with the difficulty of implementing
geometric algorithms. This combination made it a major
effort to animate even the simplest geometric algorithm.
However, things are beginning to change. The past two
computational geometry conferences have had video pro-
ceedings and last year’s conference had a paper [20] that
was accompanied by an animation [19].

In this paper we describe a visualization system that we
have built to help this change. Our system is designed to
isolate the user from any concern about how graphics is
done. Just as IATEX isolates a user from having to cre-
ate their own macros in TgX , our system allows a user to
create interesting graphics on an Iris workstation without
any knowledge of GL, Inventor [18] or other underlying
graphics libraries or tools. Our system is an interface to the
graphics library and through style files the user controls the
graphical and artistic aspects of the animation. The user
needs only to write a short C program to link her program
or data to our system to create an animation. The anima-
tion can be based upon an implementation of the algorithm
or merely upon an ASCII data file. The latter case allows
the user to produce an instructive animation without imple-
menting the general form of the algorithm. This process
is no more difficult than what would be required to create
figures for a paper.

Even simple animations are a powerful adjunct to techni-
cal papers. Further improvements can enhance this power.
Allowing the viewer to control the speed of an animation
improves the understanding. In the ideal animation, the user
can also choose various inputs and interact with the anima-
tion. Our system allows this. While using our system, the
“student” can specify the input and set the speed for the in-
dividual steps of the algorithm animation. In addition, the
student can rewind and view each step multiple times. The
additional effort to make an animation interactive is trivial.

The ability to interact with the animation is useful not
only for students who can get insight into geometry and
understand the intuition behind the algorithm. It is also
very valuable for debugging when trying to ensure the cor-
rectness of the program. There is an inherent difficulty in

244

checking a geometric object (e.g. listing vertices, edges and
faces of a polyhedron) in a debugger, a difficulty that can
be eliminated once it becomes possible to view the object.
Also, degenerate cases can be discovered more easily once
seen on the screen. In addition, the ability to “rewind”
the animation gives the programmer a way to find the stage
where the program started behaving not as anticipated with-
out rerunning the program.

Historically, algorithm animation has been a lively topic
of study since graphics devices were able to provide us-
able displays of running algorithms. They allow students
to explore the dynamic behavior of a program and improve
the understanding of an algorithm. There has been a lot of
success in this area. The best-known systems are Balsa [5],
Balsa-II [2], [3], Tango [21], [22] and Zeus [4]. They are
designed for fundamental algorithms taught in a university-
level data structures or algorithms course. There have also
been special purpose animation systems developed for sub-
areas of algorithm analysis. Of particular interest to us are
the systems that have been developed for geometric algo-
rithms and related data structures. Among these systems,
LEDA [13], the Computational Geometry Workbench [11],
and the XYZ GeoBench [16] systems have become the most
successful. Their chief goal is to facilitate the implementa-
tion of geometric algorithms by providing a library of rou-
tines along with a user interface. Our system, GASP (Ge-
ometric Animation System, Princeton), supplements such
systems by providing a rich set of visualization and an-
imation tools, which can also be used for visual debug-
ging. The main contribution of our work ultimately is an
executable that can be retrieved by fip enabling others to
produce videos similar to those that we have produced in
the past and the collection accompanying this paper. We
describe the results of decisions we made to simplify the
animator’s task. Our “theorems” are given as examples of
short programs that have done all the work of making the
animations. Our “proofs™ coansist of the animations on the
video tape. We believe that this paper is a complete piece
of work describing a tool of use to the community and hope
that you will evaluate it as such.

The remainder of the paper consists of examples of how
our system can be used. In the next section we work through
a case study telling how we created the video that was part
of last year’s video show [10]. The third section describes
various applications of the system to ease the making of
videos such as those that appeared in previous year’s video
reviews. We give short snippets of code and only brief parts
of the video to show how things were done and can be done
in a more general form. In Section 4 we discuss the use of
GASP as a central part of teaching geometry courses. We
conclude in Section 5.

2 Case Study

As we were developing GASP, we used the polyhedral hier-
archy construction [7, 8] as an example to guide some of our
thinking. We had previously implemented the computation
of hierarchies as part of a prior system [9]. The goal, when
developing GASP, was to create an animation that high-
lighted this process. As we made the animation, we also
wanted to include an example of the hierarchy in action and

so we implemented the algorithm of [8] for detecting plane-
polyhedral intersection. As this implementation progressed,
we started on the animation. As a result, the animation was
an aid in debugging the implementation.

The goal of the animation is to explain how the hierarchy
is constructed and then how it is used. For the first of these
we want to be able to explain a single pluck and then show
how the hierarchy progress from level to level. We refer
the reader to the accompanying video.

First, we want to show a single pluck. The animation
begins by rotating the polyhedron to identify it to the user.
Next we highlight a vertex and lift its cone of faces by
moving them away from the polyhedron. Then, we add the
new triangulation to the hole created. Finally, we remove
the triangulation and reattach the cone. This is done in
GASP by the following piece of C code which is up to the
creator of the animation to write.

explain_pluck(poly_vert_no, poly_vertices,
poly_face_no, poly_faces, poly_names,
vert_no, vertices, face_no, faces)

/* create the polyhedron */
Begin_atomic("poly");
Create_polyhedron("P0", poly_vert_no,
poly_face_no, poly_vertices, poly_faces);
Rotate_world();
End_atomic();

/* remove vertices and cones */
Begin_atomic("pluck");
Split_polyhedron(poly_names, ‘‘P0’’,

vert_no, vertices);
End_atomic();

/* add new faces */
Begin_atomic("add_faces");
Add_faces(poly_names[0], face_no, faces);
End_atomic();

Undo(2); /* undo plucking */
}

Each of the operations described above is a single
GASP primitive. = Create_polyhedron fades in the
given polyhedron. Rotate_world makes the scene spin.
Split_polyhedron highlights the vertex and splits the
polyhedron as described above. Add_faces fades in the
new faces. Finally, the Undo operation removes the triangu-
lation and brings the cone back to the polyhedron. (Notice
that the operations are grouped into logical phases, called
atomic units. Atomic units allow the programmer to iso-
late phases of the algorithm to be animated concurrently by
enclosing them within a Begin_atomic and End_atomic
phrase. In our case, the polyhedron is being created and
the scene is spinning as one unit.)

Notice that the code does not include the graphics: Col-

“oring, fading, traveling, speed etc. are not mentioned in

the code. In the related style file, these operations are con-
trolled. The defaults are set for the speed of rotation, the
speed of translate, the duration of time each operation takes
etc.

After explaining a single pluck, the next step is to show
the pluck of an independent set of vertices. This is no more
difficult than a single pluck and is achieved by the following
code.

animate_one_level_hierarchy(atomici_name,
atomic2_name, atomic3_name, poly_name,
vert_no, vertices, face_no, faces,
new_polys_names)

Begin_atomic(atomici_name);
Split_polyhedron(new_polys_names, poly_name,

vert_no, vertices);
End_atomic();

Begin_atomic(atomic2_name);

Add_faces(new_polys_names[0], face _no, faces);

Finish_early(0.5);

for (i = 1; i <= vert_no; i++){
Remove_object (new_polys_names[i]);

) ,

End_atomic();

Begin_atomic(atomic3_name) ;
Rotate_world();
End_atomic();

}

Here again we use the style file to choose speeds at which
cones move out, faces fade in, the scene spins etc. We also
use the style file to choose a next color that contrasts the
new faces with those that are preserved. This allow the
user to experiment with the animation without modifying
and recompiling the code.

It is a matter of creating a for loop to be able to repeat
the hierarchy construction down as many levels as desired.

Now, having created the first two segments of the anima-
tion, we turn to the task of walking through the hierarchy,
showing the intersection detection process. We begin by
highlighting a closest vertex and then passing a plane of
support through this vertex. Both of these are primitive
operations supported by GASP. For the hierarchy to grow
between levels, it is helpful to have the rotation stop at
an appropriate place to allow consideration of the growth,
GASP allows the user to do the rotation by hand and have
it recorded so that the animation can then play it back. This
replaces the tedious task of iteratively specifying rotations
by hand within a C program until the right rate is found.
. Next, there is the issue of gluing together the parts of
the animation. Initially it was necessary to watch the en-
tire animation when debugging the final section. This was
required since earlier stages of the animation set state vari-
ables that are needed by later stages. We have changed
this in GASP, building an interface which is modeled after
VCR controls. Using these controls, the programmer can
fast forward over initial fragments to get to the section of
interest. It is further possible to single step through the sec-
tion under consideration, an incredibly valuable tool when
debugging.

The last step is to move the animation from the screen to

vndeotape A problem here is that the colors that are satisfy-
ing on the screen are not acceptable on tape (it’s a difference
between RGB colors and NTSC colors). Anybody who has

245

tried to find the right colors knows how tedious this job
can be. Again, GASP addresses this issue by allowing the
user to adjust one line in the style file to note that the video
(rather than the screen) color palette should be used.

3 Animating Algorithms with GASP

With GASP, the complexity of designing and implementing
the animation is minimal. The interface we provide allows
the programmer to write brief snippets of C code to define
the structure of an animation. The system can be used in
one of two ways to make accompanying videos for talks
and classes. First, users can implement their ideas and use
GASP to create a video of their animation. Second, they
can create (in any way they wish) ASCII data of sample
runs of their algorithm which can be captured either as a
video or a collection of individual images.

Sometimes the user wishes to influence the look of the
animation and not only its structure. The user can accom-
modate his personal taste by editing an ASCII style file
which controls viewing aspects of the animation. Each op-
eration can generate several possible visualizations, called
styles; one of which is the default. For example, the cre-
ation of a polyhedron can be visualized by fading into the
scene, by growing from a point or by moving into the scene.
The programmer can choose the specific style by editing the
style file. Parameters that can be determined by modifying
the style file include the speed of the animation, the size of
the vertices, the line width, the transparency value of the
objects, the fonts and sizes of titles and text, the style of
the operations, the color for the objects and many others.
Even when the user changes the style file, the user needs no
specific knowledge of computer graphics. The animation is
generated automatically by the system. But a different an-
imation will be generated if the style file is moditied. We
will not discuss style files any further in this paper. We
refer the reader to Appendix B for an example of the style
file which we used for the example given in the previous
section.

In this section we show the flexibility of GASP by de-
scribing animations created for various algorithms. We
demonstrate how easy it will be for authors to take their
data, plug it into GASP and get a video which can go along
with any geometry conference paper. Excerpts from the
animations appear in the accompanying video.

Displaying ASCIl Data: In the previous section we de-
scribed an animation for a three dimensional algorithm that
was first implemented and then animated. Sometimes, the
user has already produced the data by other means (e.g.
Mathematica). Usually, Xfig or similar tools are used to
statically display the data. GASP offers an alternative to
this. The data can be displayed dynamically by writing
very short but powerful code. As an example, we chose
the paper “Objects that cannot be Taken Apart with Two
Hands” [20] whose authors generated the data using Math-
ematica. Although the paper was beautifully visualized in
[19], we wanted to check how easy it would be to duplicate
the animation using GASP. We asked the authors for the
ASCII data and re-animated the first and the last parts of

246

the video which appear in the accompanying video. It took
us far less than a day to do this.

The first part of the animation shows a configuration of
six tetrahedra that cannot be taken apart by translation with
two hands. The last part of the animation displays a con-
figuration of thirty objects that cannot be taken apart by
applying an isometry to any proper subset. Each part of the
animation begins by fading each object, in turn, into the
scene. The colors of the sticks vary. After all the sticks ap-
pear in the scene, the scene rotates so that the configuration
of the sticks can be examined.

The animation is produced by the following brief C func-
tion. No graphical aspects appear in the code. GASP han-
dles this by making heuristic guesses for the way the anima-
tion appears. GASP decides that fading is the appropriate
way to make the sticks appear. GASP determines the color
of each object. GASP decides the speed of each operation
and how many frames it should take. Any decision made
by GASP can be changed by the user in the style file for
the animation.

In the code below, except for get_polyhedron, the other
functions belong to GASP. The function get_polyhedron

reads the ASCII data for each object from a file."

Create_polyhedron is responsible for fading in a single
stick. Rotate_world causes the scene to spin.

hands(int stick_no)
{
float (*points)[3];
long *indices;
int nmax, fmax, i;
char *atomic_name, *stick_name;

for (i = 0; i < stick_no; i++){
/* stick i */
get_polyhedron(&points, &indices, &nmax,
&fmax, &atomic_name, &stick_name);

Begin_atomic(atomic_name) ;
Create_polyhedron(stick_name, nmax,

fmax, points, indices);
End_atomic();

}

Begin_atomic("Rotate");
Rotate_world();
End_atomic();

Using 3D Displays to Improve on the Visualization of 2D
Objects: Three-dimensional animations can exploit many
types of continuous change. For example, spinning can
help in viewing the scene from various directions. Trans-
parency can be used to show what exists behind the view-
ing plane. Creating pleasing animations in 2D is more of a
challenge. Yet, many algorithms are two-dimensional. To
produce prettier animations in two dimensions, GASP visu-
alizes two-dimensional geometry in three dimensions. This
allows smooth motion and gives- two-dimensional objects
“depth”. (e.g. a line is presented as a cylinder.)

We give here two examples of two dimensional anima-
tions. The first illustrates a motion planning algorithm by

[14] and was previously animated in [15]. The second,
which is based on [6], finds line segment intersections and
was previously visualized in [23]. Both can be viewed in
the accompanying video.

Motion Planning: In this algorithm, the object to be
moved is a disc and the obstacles are simple disjoint poly-
gons. We made up similar data and duplicated the first
part of the original video. The user needs only define the
structure of the animation. That is, first show the obstacles,
then show the initial and final positions of the disc, display
the disc and finally move the disc along the path from the
initial position to the target. To do it, the programmer must
write the short C function which appears in Appendix A.
GASP determines how the animation actually appears. In
this case, the animation begins with red obstacles fading
together into the scene. Then, two green spheres fade in,
representing the initial position and the target. At that point
a blue sphere (the disc) fades into the initial position and
moves on a given path until it gets to its final position. This
animation took only a few hours to create. A simple task!

Line Segment Intersections: This exampie illustrates a
long multi-phase 2D animation. It follows the structure of
the animation that appeared in [23], but the presentation is
completely different. The animation shows a line segment
intersection algorithm in action and illustrates its most 1m-
portant features. The first phase of the animation presents
the initial line segments and the visibility map that needs
to be built. The second phase demonstrates that the visi-
bility map is being constructed by operating in a sweepline
fashion, scanning the segments from left to right, and main-
taining the vertical visibility map of the region swept along
the way. Finally, a third pass through the algorithm is made,
demonstrating that the cross section along the sweepline is
maintained in a lazy fashion, meaning that the nodes of the
tree representing the cross section might correspond to seg-
ments stranded past the sweepline. The animation shows
how the tree and the corresponding cross sections on the
visibility map change.

Since the structure of the animation has not changed, we
used the functions written for [23]. We changed the graph-
ics in these functions to include calls to GASP, and as a
result the code became considerably shorter. The anima-
tion (from which we show only short excerpts), however,
has become much more appealing. Objects, previously pre-
sented as 2D lines, points and trees, now appear as cylin-
ders, spheres and trees in 3D respectively. In the first pass,
red line segments fade into the scene. While they fade
out, a green visibility map fades in on top of the initial
segments. This gives the user a chance to watch the cor-
relation between the segments and the map. Yellow points,
representing the “interesting” events of the algorithm, then
blink. At that point, the scene is cleared (except for the
initial segments) and the second pass through the algorithm
begins. The viewer can watch as the sweep-line advances
by rolling to its new position. The animation also demon-
strates how the map is built - new segments-to be added
to the map fade in in blue, and then change their color to
green to become a part of the already-built visibility map.
The third pass through the algorithm adds more information
about the process of constructing the map by animating the
change in the red-black trees which are maintained by the
algorithm. In addition, the animation presents the “walks”

on the map.

There are only eleven GASP’s calls necessary for the
creation of this animation and they are: Begin_atomic,
End_atomic, Create_line, Create_point,
Remove_object, Scale_world,

Rotate_world, Create_Sweepline,

Modify Sweepline, Create_tree,

Add_node_to_tree.

Note that the last four calls represent the support GASP
gives for the creation and manipulation of special objects
such as sweep lines and trees.

A final point to be made is that since the algorithm is
actually running when the animation is executed, the student
can not only control the execution of the animation but
can also choose the input and view how the animation is
changing.

Animating Non-Geometric Algorithms: Though GASP
was originally meant to facilitate animations that involve
three dimensional geometric computation, we found that
the interface we provide actually facilitates the animation
of any algorithm that involves the display of three dimen-
sional geometries, among them many of the algorithms in
[17]. To show the added power of the system, we chose to
animate heapsort.

In the movie, which is displayed in the accompanying
video, each element is represented as a cylinder whose
height is proportional to its key value. The elements first
appear in an array and then it is demonstrated how the array
can be looked upon as a tree. From this point, the animation
shows two views of the heap - one as an array and the other
as a tree displayed in three dimensions. The next step of
the animation is to build a heap out of the tree in a bottom
up fashion. Whenever two elements switch positions, they
switch in both views. After the heap is built, the first and
the last element switch and the heap is rearranged. At the
end, when the array is sorted, the colors of the elements are
“sorted” as well.

4 GASP in the Classroom

The previous section was oriented towards using GASP as
aresearch tool. In this section we describe the use of GASP
as an educational tool. '

A research videotape can be shown in a computational
geometry course as a means of introducing topics and ex-
plaining algorithms. This gives students overviews of non-
trivial algorithms. A drawback of videotapes is that the
animator chooses both the input to be used and the speed at
which the animation should run. This is unfortunate since
ideally the viewer would like to be able to choose varying
inputs and interact with the animation in a way that fits the
individual’s level of understanding. GASP’s interactive en-
vironment, illustrated in Figure 1, is designed to be simple
and effective and meet the student’s needs.

Students, viewing an animation, want to explore the al-
gorithm at their own pace. A student might want to stop the
animation at various points of its execution. Sometimes it is
desirable to fast-forward through the easy parts and single-
step through the hard ones to facilitate understanding. The

247

student may want to “rewind” the algorithm in order to ob-
serve the confusing parts of the algorithm multiple times.
GASP’s environment allows this. The Control Panel (Fig-
ure 1), which appears upon entering GASP, lets the user
direct the execution of the algorithm. To make it as intu-
itive as possible, the panel uses the familiar VCR metaphor.

- The panel allows running the algorithm at varying speeds:

fast(>>), slow(>) or unit by unit (> |). The analogous <,
<< and | < push buttons run the algorithm “backwards”.
The viewer can PAUSE at any time to suspend the execution
of the algorithm or can EJECT the movie.

It is often important for the student to interact with the
scene itself in order to observe the objects “behind”, to view
the object of interest from a different angle or to check the
relations of objects. With GASP, the student can rotate,
translate or scale the scene to achieve this. The camera
can also be reset to a “home” position, or be repositioned.
These are done with thumbwheels and push buttons which
decorate each of the windows in which the animation runs,
called the Algorithm Windows (Figure 1).

An important capability in the process of experiment-
ing with an algorithm is the ability to run the algorithm
on an input of your choice. When the algorithm is imple-
mented, this becomes an easy task, as was the case for the
Line segment intersection algorithm described in the previ-
ous section. In this example, the user need only define the
input in an ASCII file (or ask for random input to be gener-
ated) and the required animation runs. We have supporting
programs that generate the data in GASP’s format. given
several standard formats.

In addition, the user can get information by pressing the
push buttons in the Algorithm Window. It is possible to list
the objects currently appearing in the scene, print descrip-
tion of a chosen object (e.g. list of vertices and faces of a
polyhedron), list the current transformation of the selected
object or the global transformation and create a Postscript
file of the screen.

A Text Window (Figure 1), supported by GASP, adds the
ability to accompany the animation running on the screen
with verbal explanations. Text can elucidate the events
and direct the student’s attention to specific details. Ev-
ery atomic unit is associated with a piece of text which
explains the events occurring during this unit. When the
current atomic unit changes, the text in the window changes
accordingly. The next version will support voice as well.

Finally, many times students implement algorithms as
part of their term projects. Not only does GASP enable
them to produce animations of their implementations, but
also they can debug their programs more easily. The visual
nature of GASP is a first step in easing the task of debugging
geometry. GASP does more than this. Single stepping, fast
forwarding and especially rewinding are extremely useful
in the debugging process. Rewinding is important since
typically a bug is discovered only after it has occurred.

5 Conclusion

This paper has described a system for automatically gener-
ating animations in three dimensions. The main benefit of
the system is that no knowledge of graphics is required. To
do this, we distinguish between what is being animated and

248

how it is animated. The code includes only manipulations
of objects and modifications of data structures. The pro-
grammer need not specify how each operation is visualized.
GASP makes heuristic guesses for the way the animation
appears in order to create a visually pleasing one. It is
possible to change the look of the animation by editing a
style file. We have shown several animations of geometric
algorithms. None of the animations took long to produce.
We also discussed GASP’s environment which allows the
user to control the execution of the algorithm in an easy
and enjoyable way. We believe that enough animations can
be created easily to improve the way geometric talks and
courses are given.

We envision a situation where a variant of a Postscript
file can include enclosures that have animations in the same
fashion that current Postscript files seamlessly merge text
and figures. As an example of our vision, we consider two
models. The first is the existing environment on the Macin-
tosh computer. It is possible for a user of Word to include
QuickTime animations in a Word document. The reader of
the document is presented with an icon in the document.
Clicking on the icon causes the animation to play. Most
mailers currently being released on UNIX systems give the
user the ability to attach enclosures. The widespread avail-
ability of X (on all boxes ranging from thousand dollar ter-
minals to special purpose workstations) and its support for
animation suggests that a similar situation will exist in the
UNIX world very soon. It is not taxing for a workstation
having 32 Megabytes of RAM to play 20-30 second clips
of low resolution (e.g. 320x240) slow speed (e.g. 15fps)
animation in real time. This makes a powerful adjunct to a

technical paper. There still remains the problem of enabling °

users to create the animations to attach to their documents.
GASP, or a similar tool, can aid here.

Figure 1 - GASP’s environment

REFERENCES
[1] Adobe-Systems-Incorporated. PostScript language -
Reference Manual. Addison Wesley Publishing Com-

pany, Inc.

[2] M.H. Brown. Algorithm Animation. MIT Press, 1988.

[3] M.H. Brown. Exploring algorithms using Balsa-II.
Computer, 21(5):14-36, May 1988.

[4] M.H. Brown. Zeus: A system for algorithm ani-
mation and multi-view editing. Computer Graphics,
18(3):177-186, May 1992.

[51 M.H. Brown and R. Sedgewick. Techniques for al-
gorithm animation. /EEE Software, 2(1):28-39, Jan
1985.

[6] B. Chazelle and H. Edelsbrunner. An optimal algo-
rithm for intersecting line segments in the plane. Jour-
nal of the ACM, 39(1):1-54, 1992.

[7]1 D. Dobkin and D. Kirkpatrick. Fast detection of poly-
hedral intersections. Journal of Algorithms, 6:381-
392, 1985.

[8] D. Dobkin and D. Kirkpatrick. Determining the sepa-
ration of preprocessed polyhedra — a unified approach.
ICALP, pages 400413, 1990.

[9] D. Dobkin, S. North, and N. Thurston. A viewer for
mathematical structures and surfaces in 3D. In /990
Symposium on Interactive 3D Graphics, pages 141-
142, March 1990.

[10] D. Dobkin and A. Tal. Building and using polyhedral
hierarchies (video). In The Ninth Annual ACM Svm-
posium on Computational Geometry, page 394, May
1993.

[11] P. Epstein, J. Kavanagh, A. Knight, J. May,
T. Nguyen, and J.-R. Sack. A workbench for compu-
tational geometry. Algorithmica, 11(4):404-428, April
1994,

[12] Leslie Lamport. A Document Preparation System
IXTgX User’s Guide and Reference Manual. Addison
Wesley, 1986.

[13] K. Mehlhorn and S. Niher. LEDA, a library of effi-
cient data types and algorithms. Report A 04/89, Fach-
ber. Inform., Univ. Saarlandes, Saarbr cken, West
Germany, 1989.

[14] H. Rohnert. Moving a disc between polygons. Algo-
rithmica, 6:182-191, 1991.

[15] S. Schirra. Moving a disc between polygons (video).
In The Ninth Annual ACM Symposium on Computa-
tional Geometry, pages 395-396, May 1993.

[16] P. Schorn. Robust Algorithms in a Program Library
for Geometric Computation. PhD thesis, Informatik-
dissertationen eth zurich, 1992.

[17]1 R. Sedgewick. Algorithms. Addison Wesley, second
edition, 1989.

[18] SiliconGraphics. [Iris Inventor Programming Guide.
1992. :

[19] J. Snoeyink. Objects that cannot be taken apart with
two hands (video). In The Ninth Annual ACM Sym-
posium on Computational Geometry, page 405, May
1993,

[20] J. Snoeyink and J. Stolfi. Objects that cannot be taken
apart with two hands. In The Ninth Annual ACM Sym-
posium on Computational Geometry, pages 247-256,
May 1993. '

[21] J. Stasko. The path-transition paradigm: a practical

- methodology for adding animation to program inter-

face. Journal of Visual Languages and Computing,
pages 213-236, 1990.

[22] J. Stasko. Tango: A framework and system for algo-
rithm animation. [EEE Computer, September 1990,

[23] A. Tal, B. Chazelle, and D. Dobkin. The New-Jersey
line-segment saw massacre (video). In The Eighth

Annual ACM Symposium on Computational Geometry.
ACM, 1992.

A Motion Planning Code

motion_planning(int N, float x1, float yi,
float z1, float x2, float y2, float z2,
float radius))

int j;

int points_no;

float (*points)[3];
char *obstacle_name;
long *indices;

/* get and display the obstacles*/
Begin_atomic("POLYGON") ;
for (j = 0; j < N; j++){
get_obstacle(&obstacle_name,
&points_no, &points, &indices);

Create_polyhedron(obstacle_name,

points_no, points_no+1, points, indices);

End_atomic();

/* display the initial and final positions */
Begin_atomic("goal");

Create_sphere("start", x1, yi, z1, radius);
Create_sphere("end", x2, y2, 22, radius);
End_atomic();

/* create the disc */
Begin_atomic("ball");
Create_sphere("sphr", x1, y1, z1, radius);
End_atomic();

/* the disc moves along a path */
Begin_atomic("move");
LinearPath_obj("sphr");
End_atomic();

B Style File

The following style file was used for the example discussed
in the Case Study Section. The style file determines the

249

following aspects of the animation. The background color
is light gray. The colors to be chosen by GASP are colors
which fit the creation of a video (rather than the screen).
Each atomic unit spans 30 frames, that is the operations
within an atomic unit are divided into 30 increments of
change. If the scene needs to be scaled, the objects will
become 0.82 of their original size. Rotation of the world is
done 20 degrees around the Y axis. The atomic unit pluck
is executed over 100 frames, instead of over 30. The colors
of the faces to be added in the atomic unit add_faces are
light green.

begin_global_style
background = 0.9 0.9 0.9;
color = VIDEO;
frames = 30;
scale_world = 0.82 0.82 0.82;
rotation_world = Y 20.0;
end_global_style
begin_unit_style pluck
frames = 100;
end_unit_style
begin_unit_style add_faces
color = 0.3125 0.5078125 0.3125;
end_unit_style

