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Abstract

In this paper we define the concept of tolerance of a geometric or combinatorial structure
associated to a set of points as a measure of how much the set of points can be perturbed in
order that the structure remains essentially (topologically or combinatorially) the same and
we give some examples of the variety of problems suggested by this definition.

1 Introduction

Let S = {p1,...,Pn} be a set of points in the plane and let us consider a discrete geometric
structure associated to this set of points. If S is in general position (the meaning of general
position depends on the structure under consideration), we can move the points arbitrarily
inside some neighbourhood (perhaps very small) and be certain that the structure remains
topologically or combinatorially the same.

The tolerance of the structure is defined as the supreme of € > 0 such that if each point p;
is moved arbitrarily but not more than e then the structure does not change. In this paper,
more than giving details of how to compute the tolerance for specific structures, we focus on
describing the concept, its variations and its applications.

Consider for instance the Delaunay triangulation associated to the set S, DT(S). If the
points of S are in general position (no four cocircular points with empty circunscribing circle,
no three colinear points in the convex hull) and if ¢ is small enough, we know that we can move
the points of S arbitrarily but not more than ¢ and be sure that the Delaunay triangulation
does not change. We define the tolerance of DT'(S) as the supreme of such e. We are looking
for the supreme of ¢ such that each point p; can be arbitrarily moved in the disk centered at p;
and with radius ¢ without producing any change in the Delaunay triangulation (see Figure 1).

More formally, let S = {pi,...,pn} and S’ = {p},...,p,,} be two sets of n labeled points
and define
§(5,5) = max_d(pi,p;). 1
i=1,...,

It is easy to prove that 6 is a distance between labeled sets of n points. We shall say that S’ is
a € — perturbation of S if §(S,5') =e.
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Figure 1: DT(S) does not change if points move inside the disks.

We define the tolerance of DT(S) as follows:

tol(DT(S)) = sup {e 2 0| DT(S) ~ DT(S') VS’ such that §(S, 5’) < €}, (2)

where DT(S) ~ DT(S’) means that p; and p; are neighbours in DT(S) if and only if p; and 7
are neighbours in DT(S").

The same question make sense not only with sets of points, but also with more complicated
objects. The only thing we need is a measure for perturbations of the set. For instance, let
S be a set of segments and let A(S) be the arrangement generated by S. We can define a
measure for perturbations of S by labeling the endpoints of the segments and then taking the
maximum among the perturbations of the endpoints. Now we can define the tolerance of A(S)
as the supreme of ¢ such that the combinatorial structure of the arrangement is the same for all
e-perturbations of S (see Figure 2).

If P is a simple polygon, we can define a measure for perturbations of P by labeling the
vertices of the polygon and then taking the maximum among the perturbations of the vertices.
Actually, the tolerance was first introduced in [1] where the tolerance of the simplicity of a
(simple) polygon was defined and computed using Voronoi diagrams.

Another class of problems appears when the structure is not unique. Consider for instance a

Figure 2: A(S) does not change if points move inside the disks.
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Figure ‘3: Two different polygonizations with very different tolerance of their simplicity.

set S and a line [ that bisects S. We can define the tolerance of the property “l is a bisector of
S” as usual. We can interpret the tolerance as a quality coefficient for the bisector and then try
to compute the “best” bisector for S. This is an example of optimization problem, a variation
that can lead to hard problems.

For instance, let S be a set of points. Given a polygonization of S, we can compute the
tolerance of the simplicity of the resulting polygon and interpret it as a quality coefficient for
the polygonization (see Figure 3). Then the following problem can be proposed: compute the
“best” polygonization of a set of points.

Another class of problems arises when we ask about the set that maximizes the tolerance
of a certain structure or property (of course scaling the problem). If P is a convex polygon,
we can define the tolerance of this property as usual. If we divide the tolerance by a measure
of the size of the polygon, namely, the radius of the minimum enclosing circle, then we obtain
something that can be interpreted as a measure of convexity. The question is now: what is the
“most convex” n-gon that can be enclosed in the unit disk? In a similar way, we can interpret
the tolerance of the simplicity as a measure of simplicity and propose the problem: what is the
“simplest” n-gon that can be enclosed in the unit disk?

2 Applications and prior related work

The tolerance is naturally related to the accuracy of the input of data since, if the tolerance is
big, errors comparatively small in the input will be irrelevant. On the contrary, if the situation
is like in Figure 4 (where the tolerance is small), even tiny errors in data can produce different
results. However, the tolerance should not be confused with the concept of algorithmic robustness
which studies how small roundoff errors can accumulate during different steps of an algorithm
and produce a false final result. This is the approach in [6] where a concept similar to tolerance
is defined, but from the point of view of algorithmic robustness. The same can be said about
the papers [7] and [10] where the authors propose some algorithms to compute an approximate
convex hull taking into account roundoff errors. The main difference is that the tolerance
measures the possible changes of a combinatorial structure ezactly associated with a set of
points.

More related to our work are the papers [11] where the authors define the sensitivity of a set
of points that we can refer now as the tolerance of the euclidian minimum spanning tree of the
set and [13] where the author defines measures for perturbations of arrangements of lines and
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Figure 4: A small perturbation of S can change DT'(S).

circles and then computes the tolerance for these arrangements.

The concept of tolerance, because so natural, has already appeared implicitely in different
settings. For example in [4] the authors consider polygons subjected to an assumption that we
can describe now as a fixed lower bound for the tolerance of the simplicity of the polygon.

In graph layout, it is sometimes interesting to redraw a graph with slight changes to make
the picture clearer while preserving the mental map of the diagram; a possible way to do it is
to preserve some geometric graph, as the Delaunay triangulation, of the points that correspond
to the nodes [5], (8], [9]; so the tolerance would give here bounds for safe perturbations of the
nodes.

The tolerance can also be interpreted as a measure of how far is a configuration of points from
being degenerate with respect to some geometric or combinatorial structure since degenerate
configurations have tolerance equal to zero (an arbitrarily small movement of the points can
change the structure).

Another framework closely related with tolerance is dynamic maintenance of geometric or
combinatorial structures of moving points. Some work has been done when we have a set of
moving points which trajectories can be parametrized by algebraic functions of time [3]. If we
allow arbitrary motion of the points unknown in advance, then the problem is hopeless. Nev-
ertheless, under the reasonable assuption that the velocity of the points is bounded, something
can be said about the first possible change in the structure: if we know that the velocity of the
points is bounded by k, the configuration is not degenerate for ¢t = 0 and the tolerance for this
configuration is €, then no change can occur before t = E

We have mentioned several directions of research that are suggested by the concept of tol-
erance and a variety of problems that can be proposed. A number of them have been solved
as part of one of the author’s dissertation [12]. In the rest of this paper we are going to give a
sketch of some examples. Details are omitted due to space limitations. An extended version for
the tolerance of the Delaunay triangulation can be found in [2].

3 A small sample of results

Let'CH(S) be the convex hull of the set S . We define the tolerance of CH(S) as
tol(CH(S)) = sup {¢ > 0| CH(S) ~ CH(S') VS’ such that §(S, ') < ¢}, (3)

where CH(S) ~ CH(S') means that CH(S) is described by the list of vertices {pir,-- - Di, }
and CH(S') is described by the list of vertices {p} ..., /R
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In order that a perturbation of S maintains CH(S), we must be sure that there are no new
points in CH(S) and that all the points that were in C H(S) remain there. The last condition
can be easly verified by checking every three consecutive vertices in the convex hull. For the
former one, it is not hard to see that the internal point closest to the convex hull has to be a
neighbor in the Delaunay triangulation of an extremal point. Because of that, after computing
the Delaunay triangulation we can compute the tolerance of the convex hull in linear time.
Therefore we have a O(nlogn) algorithm and moreover we can prove that this is asintotically
optimal.

We recall from (2) the definition for the tolerance of the Delaunay triangulation. In order
to compute tol(DT(S)), the first observation is that tol(DT(S)) < tol(CH(S)). In order to
prevent changes in the inner edges, we have to analyze each pair of adjacent triangular faces in
DT(S) since as is well known, changes in the Delaunay triangulation are always diagonal flips.
Once we solve the problem -given four points, compute the smallest perturbation that makes
the four points cocircular-, we have a O(nlogn) algorithm for computing tol(DT'(S)) and again
this is asintotically optimal.

Consider now the problem of computing the tolerance of an arrangement of n segments. If
we make the assumption that all the faces of the arrangement are unbounded, then we can have
at most a linear number of intersections and we have a O(nlogn) algorithm for computing the
tolerance of these arrangement. A straightforward generalization leads to a O(n logn) algorithm
for computing the tolerance of the simplicity of a polygon. For the general case, we can prove
that we only need to check bounded faces with three edges and if we have k intersections the
algorithm runs in O((n + k) logn) time.

4 Concluding remarks

It is worth noticing that if DT'(S) is given, then tol(DT(S)) can be computed in linear time.
As a particular case, if the points are moved away from their position less than the tolerance,
the new tolerance can be computed in linear time.

Half the distance between the closest pair of points of S is obviously a lower bound for
tol(DT(S)). So the presence of a small cluster of points highly concentrated will result in a very
small value for tol(DT(S)). On the other hand, this cluster could not be truly relevant to the
situation that DT(S) is helping to describe. It is then reasonable to introduce a concept of local
tolerance relative not to the full structure but to some subset ob edges or faces. These ideas, as
well as the variants mentioned in the introduction are developped in [12] for DT'(S) and many
other structures.

The optimization of tolerance when the structure is not unique or when we are allowed to
choose the set of points seems to origine the hardest problems. We conclude with two open
problems exemplifying these two situations.

The tolerance of the simplicity of a (simple) polygon is defined as the supreme of ¢ > 0
such that if the vertices move less than € then the polygon remains simple. The corresponding
optimization problem is the following: how should a set of points be polygonized in order that
the resulting polygon has maximum tolerance?

Let us consider now a variable but normalized S. How should we choose n points inside the
unit disk in such a way that the Delaunay triangulation they define has maximum tolerance?
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