Edge guarding a triangulated polyhedral terrain

Hazel Everett¹ and Eduardo Rivera-Campo²

Abstract: In this note we show that \(\lceil n/3 \rceil \) guards are always sufficient to guard a triangulated polyhedral terrain on \(n \) vertices. This is equivalent to showing that \(\lceil n/3 \rceil \) edges are sufficient to cover all of the faces of a planar triangulation on \(n \) vertices.

1 Introduction

The art gallery problem, originally posed in 1973, is to determine the minimum number of guards sufficient to cover the interior of a simple \(n \)-sided polygon. In 1975 Chvatal resolved the problem showing that \(\lceil n/3 \rceil \) guards are always sufficient. Since this time many variants of the art gallery problem have been studied [O87]. Here we consider the variant in which the guards are permitted to patrol along the edges of the polyhedral terrain they wish to guard.

A polyhedral terrain is a polyhedral surface in three dimensions such that the intersection of the terrain with a vertical line is either empty or a point. A polyhedral terrain is triangulated if each of its faces is a triangle. Two points \(x \) and \(y \) of a terrain are said to be visible if the line segment \(xy \) does not contain any points below the terrain. A point \(x \) of a terrain is said to be visible to an edge \(e \) if there exists a point \(y \) on \(e \) such that \(x \) and \(y \) are visible. A set of edges is said to guard a terrain if every point of the terrain is visible from one of the edges. We call the problem of finding such a set of edges the terrain edge guarding problem. It has been shown in [BSTZ92] that \(\lceil (4n - 4)/13 \rceil \) edges are sometimes necessary to guard a terrain. It is the purpose of this note to establish that \(\lceil n/3 \rceil \) edges are always sufficient.

Let \(G=(V,E) \) be a planar triangulated graph on \(n \) vertices. A set of edges \(H \) in \(G \) is said to guard \(G \) if every face of \(G \) contains at least one vertex in the vertex set of \(H \). We call the problem of finding such a set of edges the combinatorial edge guarding problem. It is easy to see that a solution to the combinatorial edge guarding problem is also a solution to the terrain edge guarding problem: associate to a given a terrain \(T \) a planar triangulated graph \(G(T) \) corresponding to the projections of the vertices and edges of \(T \) onto a horizontal plane lying below \(T \). In this note we show that \(\lceil n/3 \rceil \) edges are always sufficient to guard a planar triangulated graph on \(n \) vertices and the result for terrains follows.

We need the following definitions. A coloring of a graph is an assignment of colors to vertices such that no two adjacent vertices receive the same color. The Four-color Theorem states that any planar graph can be colored by at most four colors [AH77]. A matching is a subset \(M \) of the edges of a graph such that no vertex is contained in more than one edge of \(M \). A matching \(M \) is called maximal if no other edge can be added to \(M \) such that it remains a matching. The size of a matching is the number of edges in it. We note here that given a planar graph, a four-coloring can be found in time \(O(n^2) \) [AH77] and a maximal matching in linear time using a greedy algorithm.

2 Main Theorem

Theorem: Every planar triangulation \(G \) on \(n \) vertices can be guarded with \(\lceil n/3 \rceil \) edges.

Proof: Let \(\{c_1, c_2, c_3, c_4\} \) be the set of four colors used in a coloring of \(G \) and let \(v_1, v_2, v_3 \), and \(v_4 \) be the sets of vertices colored by \(c_1, c_2, c_3 \), and \(c_4 \) respectively. Notice that since \(G \) is triangulated, each face contains three vertices colored by three distinct colors and consequently, any pair of color classes \(\{v_i, v_j\}, 1 \leq i < j \leq 4 \), contains a vertex from each face. Let \(G_{ij} \) be the subgraph of \(G \) induced by \(v_i \) and \(v_j \) and let \(M_{ij} \) be a maximal matching in \(G_{ij}, 1 \leq i < j \leq 4 \). An edge guarding of \(G \) can be construed by taking the edges of \(M_{ij} \) plus one edge incident to each vertex in \(v_i \cup v_j \) that is not in any edge of \(M_{ij} \). The size of this edge guarding is given by \(|v_i| + |v_j| - |M_{ij}| \). The average size of \(|v_i| + |v_j| - |M_{ij}| \) over all \(i \) and \(j \) is

\[
3n - \sum_{1 \leq i < j \leq 4} \frac{M_{ij}}{6} \text{. Thus, if } \sum_{1 \leq i < j \leq 4} M_{ij} \geq n, \text{ then at least one of these edge guardings has size less than } \lceil n/3 \rceil \text{ and we are done; so suppose this is not the case.}
\]

Consider the sets \(M_{12} \cup M_{34}, M_{14} \cup M_{23} \), and \(M_{13} \cup M_{24} \). We claim that these sets also constitute edge-guardings. We show this for the set \(M_{12} \cup M_{34} \), the argument for the other sets is similar. Suppose there is a face \(f \) that contains no vertex in the vertex set of \(M_{12} \cup M_{34} \). Since each face is colored by three distinct colors, \(f \) must contain either an edge whose vertices are colored by \(c_1 \) and \(c_2 \) or an edge whose vertices are colored by \(c_3 \) and \(c_4 \); assume the former, the argument for the other case is similar. If this edge is not included in \(M_{12} \) then, since the matching is maximal, at least one of the vertices of this edge must be in some edge of \(M_{12} \). But this is a contradiction since we suppose that \(f \) contains no vertex in the vertex set of \(M_{12} \cup M_{34} \). The average size of the sets \(M_{12} \cup M_{34}, M_{14} \cup M_{23} \), and \(M_{13} \cup M_{24} \) is

\[
\sum_{1 \leq i < j \leq 4} \frac{M_{ij}}{3} \text{. Since from the above we have that } \sum_{1 \leq i < j \leq 4} M_{ij} < n, \text{ at least one of } M_{12} \cup M_{34}, M_{14} \cup M_{23}, \text{ and } M_{13} \cup M_{24} \text{ has size less than } \lceil n/3 \rceil \text{ which completes the proof.} \]
3 Open Problems

A polynomial time algorithm for finding $\lceil n/3 \rceil$ edge guards for a triangulated planar graph (or a polyhedral terrain) follows easily from the proof. Since this algorithm involves four coloring the graph it is not very practical. It would be interesting to find a fast algorithm to solve this problem. Also, there remains a small gap between the upper and lower bounds.

References

