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Generalized Guarding and Partitioning for Rectilinear Polygons
(Extended Abstract)

E. Gyori! F. Hoffmann?

Abstract

A Ty -guard G in a rectilinear polygon P is a tree of di-
ameter k completely contained in P. The guard G is said
to cover a point z if x is visible (or rectangularly visible)
from some point contained in G. We investigate the func-
tion r(n, h, k), which is the largest number of T\, -guards
necessary to cover any rectilinear polygon with h holes
and n vertices. The aim of this paper is to prove new
lower and upper bounds on parts of this function.
In particular, we show the following bounds:

1. r(n,0,k) < I.k—a‘-_zJ , with equality for even k

2. r(n,h,1)= li’ﬁﬁs’ﬁij

3. r(n,h,2) < |2].

These bounds, along with other lower bounds that we
establish, suggest that the presence of holes reduces the
number of guards required, if k > 1. In the course of
proving the upper bounds, new results on partitioning are
obtained which also have efficient algorithmic versions.

1 Introduction

Given two points z and y in a rectilinear polygon P,
the points z and y are called rectangularly visible, denoted
zay, if the smallest aligned rectangle R(z, y) spanned by
z and y is contained in P. In this paper we study the
following (rectangular) visibility problem: Let P be a
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rectilinear polygon with h holes on n vertices. How can
one cover P by Ty~guards? Here, a Ty —guard in P is a tree
G that has graph-theoretic diameter k and is rectilinearly
embedded in P. The region V(G) covered by such a guard
is the set of all points rectangularly visible to G: V(G) =
{z € P | 3y € G such that zay}. A collection {G;},i € I
of Ty—guards covers P if | J;c; V(Gi) = P.
Let us define the following functions:

r(P,k) = min{p|3 aset of p Tx—guards
that cover P}
r(n,h,k) = maz{r(P, k)| P is a rectilinear polygon

with n vertices and h holes}

Further, let g(n,h,k) be the function analogous to
r(n, h, k) defined for general polygons with the usual vis-
ibility notion. The first result concerning these functions
is Chvatal’s classical Art Gallery Theorem, which in our
notation reads g(n,0,0) = l_%] After this result, many
combinatorial and algorithmic variations of this problem
have been studied; most of these variations can be found
in [11] and [12]. For general polygons, it is known that
9(n,0,k) = | 25| [13] and g(n,h,0) = |22] [8], [2].
Throughout this paper we use the following non-standard
convention: ]_% J is the set to be 1 for 0 < n < m.

In rectilinear polygons the situation is quite different.
For instance, for point guards (Tp-guards), it is known
that r(n,h,0) = |2] [9], [7]. This is unusual in that
the number of holes does not affect the maximum num-
ber of guards required. However, for line guards (T};-
guards) holes make the problem harder: it is known
that r(n,h,1) > |32£844| [15]. This bound is tight
for h = 0 (i.e., r(n,0,1) = [ﬁ‘l—'é‘ij) [1]. So what is the
correct bound for line guards, and what about general
Ti—guards? This paper answers the first question and
begins to address the second. We remark that all our re-
sults on Thx—guards can be interpreted as results on point
guards with (k + 1)-link visibility [12], and vice versa.

We begin with some definitions and coventions. We use
the term (n, h)-polygon to denote a rectilinear polygon
with h holes and a total of n vertices. It is well known



that one can restrict the attention to polygons in general
position, i.e. no two reflex vertices can be joined by a
horizontal or vertical line segment lying in the interior of
the polygon.

Figure 1: Rectangular decomposition and R-graph

The rectangular decomposition of an (n, h)-polygon P
is a partition of P into rectangles by extending a horizon-
tal chord into the polygon from every reflex vertex (see
Figure 1). The number of rectangles in this decomposi-
tion is "‘2 2224 h (if the polygon were not in general position
this number would be smaller). We define the R-graph
of P, denoted R(P) (or simply R when P is understood),
as a directed graph where each vertex corresponds to a
rectangle of the rectangular decomposition of P, and an
arc is directed from node A to node B iff they correspond
to adjacent rectangles and the chord separating these rec-
tangles forms an entire side of B. The direction of these
arcs gives us some visibility information. R-graphs are
similar to the H-graphs of O’Rourke [10].

The rest of the paper is organized as follows. The next
section provides constructions which establish a lower
bound for every value of r(n,h,k). The third section

contains a proof that r(n,0, k) < l TF 4J, and that equal-

ity holds for even k. One feature of our proof is that it
provides a procedure for partitioning a simply-connected

orthogonal polygon into at most J polygons of size

k+4
at most 2k + 6; this generalizes results in [10], [5] for
k = 0. The fourth section shows that the lower bound
for line guards is tight and that r(n,k,2) < [%J The
last section provides a summary and a discussion of al-
. gorithmic aspects and of future directions is given. Due

* to the space limitation we have to omit several proofs, all
details are in [6].
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2 Lower bounds on r(n,h, k)

In this section, we establish the following lower bounds
on r(n,h,k):

["k’;th even k
r(n, b, k) > [“*Q’(@,"“J k=1,3
|25t odd k25

These bounds are valid only for certain relationships of
n/h, and k, which may be thought of as “having enough
vertices per hole to make it interesting.”. It is known that
r(n,h,0) = |2] for k = 0 [7]. So, let us start with the

'_"k‘_,_ih J bound for even k > 2 which is valid for % > k+6.

Figure 2 shows examples of infinite polygon classes that
establish a lower bound of l. k +4J for A = 0. The figure

shows examples (left and right) for k = 4 and k = 6 which
consist of k_’;4 spiral arms joined in a row; one guard is
needed for each arm. Examples for larger k& are made by
increasing the number of turns on each spiral arm (one
more turn per each increase of two in k). Examples for
larger n are made by joining more arms to the polygon.
Holes made be added to these examples in the following
manner: find a spiral arm that does not contain a hole
(here we use the property that % > k + 4), shorten that
spiral by one turn, and add a rectangle in its end. This
operation increases n by two and k by one, leaving the

numerator (of | 2=2% |) unchanged, and ensures that each
k+4

arm still requires its own guard. An examples of this
construction is shown in the lower part of Figure 2 for
n=34,h=2k=6.

Figure 2: Lower bounds for even k

It remains to show lower bounds for odd k. Note that
all both of the bounds that we wish to show (one for & = 1

and 3, and another for £ > 5 both simplify to [:«?ﬁ% J

_for h = 0. We first establish this bound, and describe

the general construction method for odd k. Let the term
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t-pinwheel denote the (8t+12, 0)-polygon formed by con-
necting four spiral arms of ¢ turns in “pinwheel fashion”,
as illustrated in Figure 3 for ¢ = 3. In any t-pinwheel the
vertices at the end of each spiral arm (one for each arm)
form an independent set with respect to paths of length
2t + 1 inside the polygon. Thus, no Ty;_,-guard can see
two of these vertices.

Figure 3: A 3-pinwheel and a 3-growth

The second polygon in Figure 3 illustrares how to con-
struct larger polygons from pinwheels preserving the in-
dependence property. We call this operation grafting and
the resulting polygons ¢t -growths. One can easily compute
that they give the desired lS_n-ji J lower bound for odd

3k+13
k and h = 0.

The general [i(%;—f;;'uj bound can be established by

starting with the (holeless) (%fl)-growth and adding
holes in the same fashion that we did for the even—k ex-
amples.

Figure 4: Example for k = 3

For k = 3, we wish to show a better lower bound of
|22=2hd4 | We start, as expected, with 2-growths, but
to add a hole we increase the number of turns on a spiral
arm by one, and insert an L-shaped hole that sits inside
this turn (see Figure 4 for an example). This process adds

8 vertices and 1 hole (3An — 2Ah = 22) but the polygon
now requires one extra guard, which bears out the for-
mula. This hole insertion may be carried out as long as
2 > 19%. For k = 1, the bound of |2nt2htd | s estab-
lished by starting with 1-growths and adding rectangular
holes in the ends of empty spiral arms [15].

3 Upper bound on r(n,0,k)

Theorem 1 Any (n,0)-polygon in general position can

be partitioned into lk"? stmply-connected rectilinear

polygons of at most 2k + 6 vertices and thus r(n,0,k) <
-

Lemma 2 Any simply-connected rectilinear polygon of
at most 2k + 6 vertices can be covered by one Ty -guard.

Since this lemma can be proved easily by induction, it
is sufficient to give a proof of Theorem 1 for a polygon P
with n > 2k + 8 vertices.

We let the term cut denote either a chord of the hori-
zontal or vertical rectangular decomposition of P or the
L-shaped union of two line segments joining two reflex
vertices. We prove Theorem 1 inductively, using cuts to
subdivide the polygon P. A cut subdivides P into two
rectilinear subpolygons of n; and n, vertices such that
ny +n2 = n + 2; we refer to such a cut as a (ny, na)-cut.

Such a cut will be called good if lk—"_,-f;J + l;"f;J < [ﬁ;J,

Le. if the inductive argument can be applied. We recall
once more that if n < k+4 then we have to count one for

l"—;"‘*_ J rather than zero. A straightforward calculation
gives the following.

Lemma 3 Let n,ny,ny be even numbers withn > 2k +8
and ny+ny = n+2. An (ny,n2)-cut of an (n,0)-polygon
is good if one of the following conditions holds: (i) n) <
2k +6 and np < 2k +6

(1) ny > k+4 and ny > k+4 and ny # 0 or 1 (mod k+4)
(i11) ny > k+4 and ny > k+4 and ny Z 0 or 1 (mod k+4)
(iv) ny = ny =1 (mod k +4).

If a polygon has an (n, nz)-cut and an (n; +2, ny —2)-
cut and moreover ny > k + 4, no —2 > k + 4 then at
least one of the cuts is a good cut. If the region between
two such cuts is a rectangle they will be called a pair of
consecutive cuts.

Proof of Theorem 1. As P is an (n,0)-polygon, the
R-graph R(P) is a tree with r = 252 nodes, and there-
fore it has a node R such that after deleting it, the size
of any connected component is at most 5. In terms of



the polygon this means that deg(R) horizontal cuts par-
tition the polygon into deg(R) + 1 parts: the rectan-
gle R and polygons Py, ..., Pgeg(ry with N1, ..., Reg(R)
vertices. One can easily show that any n; is at most
Zje{l,...dey(R)}\{i} nj +6—2-deg(R). Now, we have the
three possibilities: R has 2, 3 or 4 neighbors.

Case A: Suppose that deg(R) = 2.

We have an (n1,nz + 2)-cut and an (n; + 2,n;)-cut. If
both n; and n, are > k + 4 then at least one of the
cuts is good. Otherwise, if say n; < k + 4 we get ny <
n1+6-2-2 < k+4+42 < 2k+6. Thus, the (n; +2, ng)-cut
will be good by Lemma 3 (i).

Case B: Suppose that deg(R) = 3 then (by symmetry)
we may assume one of the situations in Figure 5. Further
it is known that ny +ny+n3 = n+2 and n; < nj+ny for
any permutation (i, j, k). Clearly, we have an (n;,n, +
ng)-cut, an (n2,n; + n3)—cut and an (n3,n; + ng)—cut,
but, there is also a fourth (n3+2,n, +n, — 2)—cut which
starts vertically from A down to the horizontal edge thru
C or its extension.

Figure 5: Illustration of Case B

By a careful analysis which makes use of Lemma 3 one

can show that for even k one of the four cuts is good.
Further this holds also for odd k with the only exception
n=ny=1 (mod lc+4),n3= k+3.
Then, let us assume that the vertex C is more left than A
(otherwise we have to change their roles and the roles of
Py and P,). We define a new cut shooting a vertical ray
from C into P; until we find a reflex vertex on the right
side of the ray which is higher than A (and obtain an
L-shaped cut) or until the ray hints a horizontal polygon
edge (and obtain a vertical cut). Let P; be the subpoly-
gon defined by the new cut which contains P;. Then it
is an easy exercise to prove that either Pj3 is of size k + 7
or one can find a consecutive cut which is inside Pj.
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Case C: If deg(R) = 4 this can be reduced to Case B
Joining together either the two subpolygons on the left or
on the right side of R by an L-shaped cut (dependently
on which side the sum of the sizes is smaller).

a

4 Upper bounds on r(n,k,1) and r(n, k,2

Theorem 4 |32+35+4| T\ _guards are always sufficient
to cover any rectilinear (n, h)-polygon.

In fact we prove that these guards can be chosen to be
polygon edges or edge extensions.

Let Gy, ...,Gi be a family of Ty—guards in an (n, h)-
polygon P and D a rectilinear region covered by them
(called a district of the guards). Usually, D will be smaller
than the maximal possible region covered by Gi,...,G,.
Deleting D from P we obtain a number (say ¢’) of con-
nected regions which are (ny, h;),..., (n, he)-polygons
denoted by P, ..., P...

The deletion of D will be called a reduction if | +
Yooy |Gttt | < |3242h+4 | je. if the deletion al-
lows (o apply induction. Note, that this definition also
makes sense if D is the whole polygon: then we have

¢’ = 0, the sum over an empty set is also 0 and we get

< |

Using the notations above we define
gain(D) = 3(n—n')+4(h-h') +4(1-¢)

where n’ = Zf;l ng, b = Z:f;l h;. Clearly, gainp(D) >
[ - 16 implies that the deletion of D is a reduction.

It will be very helpful to represent gain(D) using the
number r = 2 4+ h — 1 of nodes in R(P). Thus n =
2(r—h+1)and n’ = 2(+' — b’ 4+ ¢’) where ' is the total
number of nodes in the graphs R(P:), 1 <i < ¢/ and we
get

gain(D) = 6(r —r') — 2(h - k') + 10(1 - ¢').

The triple (6, 6y, 6.), where 6, = r—r', 6, = h—h' 6. =
1 — ¢, will be called the type of D.

Lemma 5 (Expansion Lemma) Let G be a horizontal
Ti-guard in a polygon P and D a district of G. Let Py be
a polygon representing a connected component of P\ D,
and e be a horizontal edge that bounds P, from above
and is shared between P, and D. Let R be the rectangle
of Py that contains e. Let D be the expansion of D by
R and all rectangles reachable from R on directed paths
in R(Py). If the edge e is (orthogonally) visible from G
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(see Figure 6, where G runs across the top of the figure),

then D 1s also a district of G and the following holds:
gain(D) > gain(D) + 6

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\N

--------------------------------------

|

guard

Figure 6: Illustrating Lemma 5

We define the frame of R to be the largest subgraph F
such that for every vertex R in F, degp(R) > 2. Clearly,
if we denote by T the graph R \ F then any connected
component of T is a tree.

The proof of the theorem now follows from two lem-
mata which show that each non-trivial polygon is re-
ducible.

Lemma 6 If C is a connected component of T which
contains at least three rectangles then for any R € C
such that degg(R) = 1 one can find a reduction with R
in the reduction district.

Due to the space limitation we have to omit the proof
which consists of a rather long case inspection and sev-
eral tricky arguments, all details are in [6]. However its
difficulty is not surprising because it yields a new proof
for simply connected polygons (cf. [1]).

An eztremal hole edge is a polygon edge e on the bound-
ary of a hole such that
- e connects two reflex vertices and
- in the partition of P induced by extending e in both di-
rections until it hits the boundary, the region containing
e is simply-connected.

One can show that if a rectilinear polygon has holes,
then it has an extremal hole edge.

Lemma 7 Let P be a polygon such that any connected
component of T consists of at most two rectangles.
W.lo.g. let e be a horizontal extremal hole edge bound-
ing the hole from above and let R € R be the rectangle

having e on its boundary. Then there is a reduction such
that R or a rectangular part of R is in the district of the
reduction.

Proof: We note that R has two lower neighbors R; and
R,. If there are also upper neighbors S; and S; of R
then because e is extremal, each of them is either leaf or
of degree two and adjacent to some leaf Ly or Ly. Let N
be the set consisting of all upper neighbors of R and all
leaves adjacent to these neighbors. We distinguish three
cases:

Case A: Suppose that any rectangle of N is reachable

from R on a directed path in R (note that this condition
holds also if N is empty).
We place a horizontal guard onto the full extension of
e. Clearly, it covers a district D consisting of R and all
rectangles of N. Thus, the type of D is (1+|NJ, 1,0) and
its gain is 6 + 6 - [N| — 2 > 4. Moreover for both R; and
R, the expansion lemma can be applied, so the expanded
district D has a gain >4+ 2-6 = 16.

Case B: Suppose that there is (exactly) one upper

neighbor S; and an arc R — 5.
Placing a horizontal guard onto the upper boundary of
S1 and extending it as far as possible we can cover R and
all rectangles of N and hence we can proceed further as
in Case A.

Case C: Suppose that there is (at least) one upper
neighbour S; adjacent to a leaf L; and arcs R — S; —
L.

W.lo.g. let Sy be a left neighbor of R. Placing a vertical
guard onto the common vertical polygon edge f of R and
S1 and its extension one can cover a district D consisting
of Ly,S; and that part of R which is bounded by f on
the left side and by the extension of the left boundary of
R, on the right side. So after deleting D the remaining
part of R forms together with R, one rectangle in the
rectangular decomposition and thus D is of type (3,1,0)
and one has gain(D) = 16. a

We close this section with stating an upper bound for
To-guards.

Theorem 8 For any (n, h)-polygon P we have r(P,2) <
n
13-

To prove this theorem one goes along similar lines as
in the proof of Theorem 4 where in contrast to the above
proof the lemmata for reducing simply connected parts
become rather trivial. For reducing holes the existence
of extremal edges is also essential. Roughly speaking one
can use the second arm of a Th—guard to cover one rec-
tangle more. The full proof can be found in [6].



5 Algorithmic Aspects and Conclusion

The combinatorial upper bounds proved in this paper
have also efficient algorithmic versions.

Theorem 9 (i) Let k be fized. Given a rectilinear (n,0)-
polygon in general position one can partition it in linear
time and linear space into at most l_kLHJ stmply con-
nected rectilinear polygons of at most 2k + 6 vertices.

(i) In O(nlogn) time and linear space one finds for a
given rectilinear (n, h)—polygon a decomposition into at
most | 3BE+4 | districts of Ty -guards as well as a de-

composition into at most | 2| districts of To—guards.

The details of the algorithms which we have to omit use
rather standard methods. In (i) the linear time bound
depends both on Chazelle’s linear time triangulation of
simple polygons (3] and on a modification of the decom-
position procedure in Theorem 1 such that it works in a
greedy way. In (i7) a sweep-line algorithm can be used
to construct the R-graph, see also [4]. That is the only
part of the algorithm which needs O(nlogn) time.
Finally we remark that also the partition algorithms in
(i7) can be proved to be optimal.

We have found that in the rectilinear world there is a
strong difference between odd and even k. Surprisingly,
for k > 3, we have not found lower bounds where in-
creasing h makes polygons require more guards, and we
in fact believe that increasing h makes polygons require
less guards. However, we are unable to establish this, and
leave this question unsettled.

We note here that our lower bound constructions give
the same bounds even if the usual visibility (rather than
rectangle visibility) is used, and the Ty-guards are not
rectilinearly embedded; the upper bound arguments (ob-
viously) also hold in this more general situation. The
fourth author has previously shown that the even-k upper

bound of r(n,0,k) < [ k +4J holds in this situation [14]

his result is implied by Theorem 1.

There are many questions related to this paper which
are yet to be answered. Aside from the usual questions
about tight bounds for the generalized guarding prob-
lem both for rectilinear and general polygons, we want to
mention the following:

(i) What is the lower bound on r(n, h, k) when 'y
(lots of rectangular holes)?

(ii) Are there lower bound examples that have a different
structure but illustrate the same bounds as our construc-
tions? We conjecture that there are no such examples.
(iiiy What are the exact bounds for rectilinear polygons
with holes expressed as a function only of n and k7 (Wes-
sel showed a lower bound of | 2244 | for k = 1 [15].)

is small
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