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Abstract

This paper presents an algorithm that computes an
optimal rectilinear Steiner minimal tree of n points in
at most O(n22.62") time. For instances small enough
to solve in practice, this time bound is provably faster
than any previous algorithm, and improves the pre-
vious best bound for practically solvable instances,
which is O(n3"). Experimental evidence is also pre-
sented that demonstrates that the algorithm is fast in
practice as well—much faster, in fact, than its worst-
case time complexity suggests. As part of the analysis,
it is proven that the number of full sets on a set of n
terminals is at most O(n1.62").

1 Introduction

The rectilinear Steiner minimal tree (RSMT) problem
is stated as follows: given a set T of points called ter-
minals in the plane, find a set S of additional points
called Steiner points such that the length of a rectilin-
ear minimum spanning tree of TUS is minimized. For
example, Figure 1 illustrates an optimal RSMT for a
set of 27 terminals. Garey and Johnson [5] prove that
the RSMT problem is NP-complete, indicating that
a polynomial-time algorithm to compute an optimal
RSMT is unlikely to exist.

A number of algorithms to compute optimal
RSMTs have appeared in the literature; we will briefly
discuss those for which good bounds on worst-case

time complexity are known or those that perform well

in practice.

One may compute an optimal RSMT by reducing
an instance thereof to an instance of the Steiner prob-
lem in graphs. From a set of n terminals, one can
use a theorem of Hanan [6] to construct a graph G
with O(n?) vertices such that solving the Steiner prob-
lem in G solves the original geometric RSMT in-
stance. The most efficient algorithm for solving the
Steiner problem on G is the dynamic programming
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Figure 1: An optimal RSMT for a set of 27 terminals.

algorithm of Dreyfus and Wagner [3], which has time
complexity O(n23") when applied to G. Thombor-
son, Alpern, and Carter [12] present some improve-
ments to the Dreyfus-Wagner algorithm that do not
change the algorithm’s time complexity, but do im-
prove its efficiency in practice. Ganley and Cohoon [4]
present a more direct, geometric algorithm that has
time complexity O(n3") and is faster in practice than
the Dreyfus-Wagner and Thomborson, Alpern, and
Carter algorithms (see Section 7).

Smith ([11], page 162) presents an algorithm with
worst-case asymptotic time complexity nO™) | which
is asymptotically faster than any exponential algo-
rithm, but his algorithm is not practically applicable
due to tremendous constant factors in its time com-
plexity. Salowe and Warme [10] present an algorithm
that works very well in practice, but the only known
bound on its worst-case time complexity is O(2%") (our
results in Section 5 improve this slightly to O(2"1:6*").

Here we strike a balance between theoretical and
practical efficiency by presenting a practical algorithm
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Figure 2: Possible full tree topologies according to
Hwang’s theorem.

whose time complexity is at most O(n?(1 + ¢)"),
where ¢ = (1 + V/5)/2 ~ 1.62. This is the best proven
time complexity of any practically applicable algo-
rithm, improving the previous O(n3"™) bound achieved
by the algorithm of Ganley and Cohoon [4].

As mentioned previously, the no(/n) algorithm of
Smith [11] is asymptotically faster than any exponen-
tial algorithm, but by analyzing the constants in the
time complexity of Smith’s algorithm, we can prove
that our algorithm is faster than Smith’s for instances
containing fewer than about 100 terminals (note that
the best algorithms can only solve 35-terminal prob-
lems in practice [10]). Indeed, our analysis is conserva-
tive; Smith states that one would want to use a differ-
ent algorithm for instances containing fewer than 300
terminals [11]. Our algorithm is also faster in practice
than all other known algorithms except that of Salowe
and Warme.

2 Background

Before describing the algorithm we define several
terms. A set T of terminals is a full set if in every
optimal RSMT for T, every terminal in T is a leaf.
An RSMT of a full set is called a full tree. Hwang [8]
proved that a full tree can have only one of two simple
topologies. A type I topology is a backbone segment
adjacent to one of the extreme terminals, with seg-
ments connecting the other terminals to the backbone.
From left to right, these terminals must appear on al-
ternating sides of the backbone. A type II topology
is similar to a type I topology, but with the leftmost
(or rightmost) terminal connected to the segment that
connects the second terminal from the left (or right)
to the backbone. The two topologies are illustrated in
Figure 2. Using Hwang’s theorem, an optimal RSMT
of a full set can be computed in linear time by check-
ing these two topologies. Finally, a well-known de-
composition theorem regarding RSMTs is that every
RSMT consists of a number of full trees that intersect
at terminals of degree two or greater (see, e.g., Hwang,
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(1) For m = 2 to |T

(2) For all S C T such that |S|=m
(3)  £[S] = FullTree(S)

(4) For all A, B such that AXMB =S
(5) £[S] = min{£[S], ¢[A] + ¢[B]}

Figure 3: The FDP algorithm. T is the set of in-
put terminals, and the routine FullTree computes the
length of an optimal full tree using Hwang’s theorem.

Richards, and Winter [9]).

3 Full set dynamic programming

Our algorithm builds upon the Full set Dynamic Pro-
gramming (FDP) algorithm of Ganley and Cohoon [4].
Since that algorithm is central to the current one, we
briefly describe it.

From the decomposition theorem mentioned above,
it is clear that an optimal RSMT for any set of termi-
nals is either a full tree satisfying Hwang’s theorem, or
can be divided into two smaller trees joined at a termi-
nal. This observation leads to the FDP algorithm. Ev-
ery subset of the input set of terminals is enumerated
in order of increasing cardinality. For each subset S,
the algorithm checks the length of the full tree pro-
duced by applying Hwang’s theorem, and the lengths
of the trees produced by joining the optimal RSMTs
of every pair of subsets A and B such that AUB = §
and |[AN B| = 1. (Henceforth we write AX B = S
if AUB = S and |ANB| = 1.) The decomposition with
minimum length is an optimal RSMT for the set S of
terminals. Since the subsets are enumerated in order
of cardinality, at each step the optimal RSMTs for the
smaller subsets A and B have already been computed
and stored.

Figure 3 describes the FDP algorithm in detail. As
shown, the algorithm computes only the length of the
optimal tree; a similar top-down pass computes the °
actual tree given the lengths computed by the first
pass. The time complexity of the FDP algorithm is

n
n2" + Y (:l)QO-l = O(n3")

(the first term is incurred by line (3) of Figure 3, and
the summation mirrors the remaining code).
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4 Full set screening

The key concept in the Euclidean Steiner minimal
tree algorithms of Cockayne and Hewgill [1, 2] and
Winter [13] and the RSMT algorithm of Salowe and
Warme [10] is that of full set screening. The idea is
that relatively few subsets of the set of terminals can
be full sets. Thus, one can apply a number of tests to
each subset to potentially eliminate it from candidacy
as a possible full set. For example, the subset must be
connectable according to one of the topologies speci-
fied by Hwang’s theorem.

Full set screening can also be used to improve the
running time of the FDP algorithm. In the FDP algo-
rithm, the innermost loop enumerates all pairs of sub-
sets A and B such that AX B = S. Having identified
a number of candidate full sets, one can also require
that A be a candidate full set while still satisfying the
decomposition theorem. Thus, if the number of can-
didate full sets that are subsets of S is asymptotically
smaller than the total number of subsets of S, and if
the subsets of S that are candidate full sets can be ef-
ficiently enumerated, then the time complexity of the
FDP algorithm is improved.

Before proceeding further, we define some addi-
tional notation. For any set S of terminals, let F(S)
denote the set of candidate full sets that are subsets
of S. Note that if S is itself a candidate full set,
then F(S) includes S. The set of input terminals
is T, so the complete set of candidate full sets is F(T').
Let f(n) denote the maximum number of candidate
full sets over all sets of terminals of cardinality n.

5 Bounding the number of full sets

An important component of our analysis is proving an
upper bound on f(n) that is asymptotically smaller
than O(2"). By using Hwang’s theorem, we prove
that f(n) < O(n¢™), where ¢ = (1 +/5)/2.

We first prove a pair of results regarding bi-
nary strings, and then use these results to derive
the bound. These strings are described by regu-
lar expressions; readers not familiar with regular ex-
pression notation may refer to Hopcroft and Ull-
man [7]. Define a string S to be a sequence s13 - - - sy,
where s; € {a,b}, i.e. S is a string in the lan-
guage (a + b)*. Define a substring of a string S
to be s;i,8i,---si, where 1< <i3<---<it<n.
Each s; in a string S is considered distinct; e.g.,
given a string S = aaa, the substrings s;s; and s2s3
are considered distinct even though they both have

value aa. An alternating string is one in the lan-
guage b(ab)*(a + €), and an anti-alternating string is
one in the language a(ba)*(b + ¢).

Lemma 1 There are at most ¢" alternating (or anti-
alternating) substrings of an alternating string of
length n, where ¢ = (14 /5)/2.

Proof: Let A(n) denote the number of alternating
substrings of an alternating string of length n. Simi-
larly let B(n) be the number of anti-alternating sub-
strings of an anti-alternating string of length n. An
alternating substring of an alternating string S of
length n can either be composed of its first element
concatenated with an anti-alternating substring of an
anti-alternating string of length n — 1, or neither of
its first two elements but an alternating substring of
an alternating string of length n — 2. This observation
yields the following recurrence:

A(n) = Bn—-1)+ A(n-2)
B(n) = A(n-1)+B(n-2)
A = 1
B(l) = L
This recurrence solves to A(n) = F, < ¢" (Fy is

the n*h Fibonacci number). The number of anti-
alternating substrings in a string S is equal to number
of alternating substrings in the complement of S, so
the same applies for anti-alternating substrings. O

We now show that the number of alternating sub-
strings of a string S is maximized if S is itself alter-
nating.

Lemma 2 The number A(n) of alternating sub-
strings of an alternating string of length n is at least
as large as the number of alternating substrings of any
string of length n.

Proof: The proof is by induction on n. The first
nontrivial base case is n = 2. The alternating
string ba contains two alternating substrings, ab con-
tains one, aa contains none, and bb contains two. For
the inductive hypothesis, assume that an alternating
string of length less than n contains at least as many
alternating substrings as any string of equal length.

Let S be a string of length n, and assume that S is
neither an alternating nor an anti-alternating string,
so that it must contain a contiguous sequence C of the
form aaa* or bbb™ (without loss of generality assume
that C is in bbb*). Let W be the portion of S to the
left of C, and let E be the portion of S to the right
of C, like so:

S = babab - --aba bbb - - -bbb abab - - - ababa .

~ -~

w C E




Let m = |W| and ¢ = |C|, and assert that C is maxi-
mal in the sense that w,, = ¢; = a. Assume that the
number A(S) of alternating substrings in S is greater
than A(n); we will show that this assumption leads
to a contradiction. In all cases, at most one of the
elements of C' can be present in an alternating sub-
string. If W is empty, then an alternating substring
can be formed by any element of C along with an
anti-alternating substring in W, or by no element of C
nor wy, but an alternating substring in wows - - - wp,.
By the inductive hypothesis and Lemma 1, the num-
ber of alternating substrings in any string of length m
for m < n is at most ¢™. Thus,

A(S) S c¢n—c+¢n—c—2.

We have assumed that A(S) > A(n), implying

¢n-—c + ¢n—c-2

1

c+ F

which has no solution, contradicting our assumption.

A similar argument can be applied if instead E is
empty.

If W and E are both nonempty, then an alternat-
ing substring can be formed by concatenating an al-
ternating substring of W, an element of C, and an
anti-alternating substring of E, or by an alternating
substring of W concatenated with an alternating sub-
string of E. In the latter case, the number of strings

in which w,, and e; both appear must be subtracted.
Again using the inductive hypothesis and Lemma 1,

A(S) < c¢n-—c+¢n—c — ¢n—c-2.

> " ie.,

> ¢°,

Invoking the assumption that A(S) > A(n) yields

c+1- ;% > ¢c’

which again has no solution, providing the desired con-
tradiction. a

We now use Lemmas 1 and 2 to bound the number
of candidate full sets for a given backbone. Assume
that no two terminals have the same z or y value; if
necessary, this can be ensured by perturbation. La-
bel the terminals ¢y,%2,...,t,, such that z;; < z,,,,
for all 1 < i < n. We now show that if ¢; and ¢;
define a backbone ¢, then the number of full sets in-
ducing a type I topology with ¢ as a backbone is at
most O(¢ ).

Theorem 1 The number of full sets inducing a type I
topology with a backbone defined by terminals t;
and t; is at most O(¢’ ~*).
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Proof: Assume without loss of generality that the
backbone £ is horizontal, its right endpoint is ¢;, its left
endpoint is (Z¢,, y:,), and that y,, < ye;. Let &, = ;.

A type I topology with £ as a backbone can con-
tain only terminals ¢; such that i < k£ < j. Build a
string S of length j — ¢ — 1 based on the positions of
the terminals relative to ¢; specifically, sx_; is an a
if yt, <4y, and sg_;is a b if yy, > £,. Since y;; < £y,
terminal ¢; corresponds to an a, and there is a one-
to-one correspondence between alternating substrings
of S and sets of terminals that form a valid type I
topology with £ as their backbone. From Lemmas 1
and 2, the maximum number of alternating substrings
of a string of length n is ¢”, so the maximum number
of candidate full sets with ¢ as a backbone is ¢/~ 1.
This amount must be doubled to account for the case
where £ is vertical rather than horizontal, and dou-
bled again for the case when ¢ is adjacent to ¢; rather.
than t;, giving us 4¢7 =1 = O(¢/ %), as desired. O

We now use Theorem 1 to show that the maximum
total number f(n) of candidate full sets on n terminals
is at most O(ng™).

Theorem 2 The number f(n) of candidate full sets
on n points is at most O(n¢™).

Proof: A candidate full set must satisfy Hwang’s the-
orem, so the quantity f(n) is bounded by the total
maximum numbers of candidate full sets with type I
or type II topology for every possible backbone. The-
orem 1 gives a bound on the number of candidate full
sets with type I topology for a given backbone. Given
a backbone defined by terminals ¢; and tj, a type II
topology can be formed by joining a terminal to the
left of ¢; or to the right of ¢; to the full tree. In the
worst case, for every type I topology, any of these ter-
minals can form a valid type II topology in this man-
ner. Thus, from Theorem 1, the maximum number of
candidate full sets with type II topology for a back-
bone defined by t; and t; = t;+m is O((i+n—j)¢’ ~%).
Summing over all choices of ¢; and t; yields

n n-—i

f(n) <Y D (n—m+1)¢™ = O(ne"),

i=1 m=0

as desired. a

6 The O(n22.62") algorithm

Given the results above, it remains only to show that
for each subset S, the set of candidate full sets that are
subsets of S, i.e. the set FI(S) = {S' € F(T): S C S},
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(1) For m = 2 to |T|

(2) For all S C T such that |[S]=m

(8) if (S & F) then {[S] = 0

(4) Compute F(S)

(5) Forall A,B: A€ F(S)and AXB=S
(6)  £[S] = min{{[S], £[A] + ¢[B]}

Figure 4: The SFDP algorithm. T is the set of input
terminals, and F is the set of candidate full sets.

can be efficiently computed. We now show that this
can be accomplished in O(|F(S)|) time.

The set F'(S) consists simply of S itselfif S € F (T),
plus F(S') for each S’ = S — {s;} such that s; € S.
This observation dovetails nicely with the dynamic
programming algorithm: as the algorithm enumerates
the sets S of cardinality m, it retains F(S) for each.
Each new F(S) is then computed as follows:

FS)=({SInF@)yu |J F(S).
: §'=5-{s:}

Since each F(S’) has been stored from the previ-
ous iteration, this computation can be performed
in O(|F(S)|) time.

We are now ready to describe the algorithm, which
we call Screened Full set Dynamic Programming
(SFDP). The subsets of the input set T of termi-
nals are enumerated in order of increasing cardinality,
starting with subsets of cardinality three. For each
subset S, compute F(S) as described in the previous
paragraph, and examine each subset A in F(S). For
every such A, consider each set B such that AX B =
S (recall that A M B = S means that AUB = S
and |AN B} = 1). The length of an optimal RSMT
for S is the minimum over all such A and B of their
combined lengths, and the minimum of this value and
the length of a full tree on S if S isin F(T'). Since the
subsets are enumerated in order of increasing cardinal-
ity, each required B has already been computed and
stored. The SFDP algorithm is shown in pseudocode
form in Figure 4.

As described above, F(S) can be computed for any
set S in O(]F(S)|) time. Thus, the time complexity
of the SFDP algorithm is

miza (2 )msm).

From Theorem 2, f(m) < m¢™, so the time complex-
ity of the SFDP algorithm is at most

> (n)m2¢'" = O(n*(1 + ¢)") = O(n?2.62").
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Figure 5: Running times of Dreyfus-Wagner (DW),
Thomborson, Alpern, and Carter (TAC). FDP, and
SFDP algorithms.

The time required to compute the set F(T') of can-
didate full sets is O(f), where f is the number of sub-
sets that satisfy Hwang’s theorem; by Theorem 2, this
time complexity does not exceed O(n¢™). Additional
tests require polynomial time for each candidate full
set satisfying Hwang’s theorem [10], so this term is
dominated by the decomposition summation.

7 Empirical results

We have implemented the SFDP algorithm in order
to compare it empirically with the FDP algorithm [4],
the Dreyfus-Wagner algorithm [3], and the algorithm
of Thomborson, Alpern, and Carter [12].

Figure 5 plots the running time of each algorithm
as a function of the number n of input terminals. As
can be seen, the FDP algorithm is faster than both
the Dreyfus-Wagner algorithm and the Thomborson,
Alpern, and Carter algorithm, but still has the same
slope on the logarithmic scale of the plot, since the
base of the exponential in its time complexity is still 3.

While the SFDP algorithm is a bit slower than the
FDP algorithm for n < 10, after this point it is faster
than all three algorithms, and becomes more so as n
grows, due to the asymptotic improvement in the ex-
ponential. Note that O(n22.62") is an extremely pes-
simistic bound. In practice, we apply a number of
other tests for full set candidacy [10], and f(n) seems
to be much smaller than O(n¢"); in fact, we conjec-
ture that there is a polynomial upper bound on f(n).
Indeed, the slope of the running time curve for the
SFDP algorithm suggests that its time complexity in
practice is O(p(n)2"), where p(n) is a polynomial func-



tion of n. This suggests that the number of full sets,
at least in practice, is indeed polynomial, since the 2"
term is incurred by the outer two loops of the algo-
rithm alone.

We note that the Salowe and Warme algorithm [10]
is still significantly faster than the SFDP algorithm in
practice. However, since they use a branch-and-bound
search to examine the various full set decompositions,
it is difficult to derive a nontrivial bound on the time
complexity of their algorithm. Using the bound on
the number of full sets from Theorem 2, one obtains
an upper bound of O(2"#") on the time complexity of
the Salowe-Warme algorithm, though based on its per-
formance in practice, this bound is clearly pessimistic.

The main source of inefficiency in the SFDP algo-
rithm is examining every subset of the set of termi-
nals. In practice, it appears that a very small portion
of these subsets admits any valid decomposition into
candidate full sets—in our tests, the ratio of the num-
ber of subsets with valid decompositions to the total
number of subsets was roughly 0.04 for 20-terminal in-
stances, and this ratio decreases as n grows. If one can
efficiently determine a priori which subsets admit valid
decompositions, and examine only those, we believe
the time complexity of the algorithm can be improved
to O(p(n)c") for ¢ < 2. Note that this modification
requires a different way to handle enumerating candi-
date full sets, as the current technique is dependent
on enumerating every subset of the set of terminals.
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