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On the Number of Extrema of a Polyhedron f

Leonidas Palios
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University of Minnesota

Abstract: In this paper we obtain a tight bound on the number of local minima and maxima
(collectively called eztrema) of a three-dimensional polyhedron P with respect to an arbitrary
direction A. For simplicity, we assume that no edge of P is normal to A, which implies that only
vertices of P can be extrema; if we relax this assumption, our bound translates into a bound
on the number of maximal connected sets of extrema. We prove that if the polyhedron has r
reflex angles, then the number of extrema (with respect to a given direction) does not exceed
2r + 2. Moreover, for every integer r > 0, we exhibit a polyhedron that has r reflex angles and
2r 4 2 extrema with respect to a certain direction.

1. Introduction.

Consider a three-dimensional polyhedron P and an arbitrary oriented line A; we are interested in
computing bounds on the number of eztrema of P (that is, its local minima and maxima) with respect to
A. For simplicity, we assume that no edge of P is normal to A, which implies that only vertices of P can
be extrema; otherwise (in this case, an infinite number of points may contribute extrema with respect to
A), our bound translates into a bound on the number of maximal connected sets of extrema.

Except for its importance as a combinatorial result, a bound on the number of extrema proves to be
useful in estimating the complexity of algorithms. For example, in two dimensions, a 2r +2 upper bound on
the number of extrema of a polygon that has r reflex vertices proves instrumental in the analysis of Hertel
and Mehlhorn’s algorithm for polygon triangulation [5]. In turn, our interest in the three-dimensional
version of the problem is motivated from an algorithm to decompose the boundary of a polyhedron into
“well behaved” patches [3], where the number of produced patches relies on the number of extrema of the
polyhedron. It is important to observe that the number of extrema of a polygon or polyhedron is directly
related to how “non-convex” the polygon or polyhedron is; after all, a convex object exhibits exactly two
extrema. So, it is desirable that the bound on the number of extrema be expressed in terms of a measure
of non-convexity of the polygon or polyhedron. For a polygon, it is the number of its reflex vertices that
is most commonly used for this purpose; for a polyhedron it is the number of its reflex edges, i.e., edges
whose corresponding (internal) dihedral angles exceed 7. Several recent algorithms and bounds have been
expressed in terms of these measures (see [4], [1], [2]).

t This work has been supported by grants from the National Science Foundation (NSF/DMS-8920161), the
Dept. of Energy (DOE/DE-FG02-92ER25137), Minnesota Technology, Inc., and the Univ. of Minnesota.
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The problem of computing bounds on the number of extrema of a polygon is very simple: an easy

inductive proof (it involves “resolving” a reflex vertex at the inductive step) establishes an r + 2 upper
bound, where r is the number of reflex vertices of the polygon; the bound is

A
tight, since for every integer r > 0 there exists a polygon that has r reflex

vertices and r + 2 extrema (see Figure 1). This approach does not extend
to the three-dimensional case, however; “resolving” a reflex edge may lead
to splitting other reflex edges, thus effectively doubling their number in the -
worst case. Our approach relies on observing how the number of polygons Figure 1
changes in the intersection of a polyhedron P with a sweep plane that moves

along a direction A; it helps us prove an upper bound of 2r + 2 on the number of extrema of P with respect
to A; r denotes the number of reflex edges of P. We also show that this bound is tight by exhibiting a
polyhedron that has r reflex edges and 2r + 2 extrema (for every integer r > 0).

The paper is structured as follows. In Section 2 we introduce our terminology. The upper bound is
proved in Section 3, while the lower bound is presented in Section 4. Finally, in Section 5 we summarize
our results and pose some open questions.

2. Geometric Framework.

A polyhedron in R? is a connected piecewise-linear 3-manifold with boundary. Its boundary is
connected and it consists of a collection of relatively open sets, the faces of the polyhedron, which are
called vertices, edges, or facets, if their affine closures have dimension 0, 1, or 2, respectively. The definition
of a polyhedron rules out self-intersecting, dangling, or abutting faces, as well as degeneracies like the ones
shown in Figure 2 (the shown objects have locally been compressed into a single point or a single edge).
Then, each edge is incident upon exactly two facets; if the (interior) dihedral angle formed by the facets
incident upon an edge e of a polyhedron exceeds 7, we say that e is reflez.

Next, we formally define the notion of extrema in any dimension d. A point p of a d-dimensional set
S of points is called an eztremum of S with respect to an oriented line A, or a A-eztremum for short, if
the intersection of S with a small enough d-ball centered at p lies entirely in the one of the two closed
halfspaces defined by the hyperplane normal to A that passes through p. The extrema are characterized as
negative or positive depending on whether the above intersection lies in the non-negative or non-positive
halfspace respectively. For the polygon of Figure 3, for instance, the vertices A, B, C and D are negative
A-extrema, while X and Y are positive ones. The vertex Z is not an extremum. The definition allows for
all the points of an edge or even a facet of a polyhedron P to be extrema, which obviously defeats the
purpose of computing an upper bound on their number. If we assume, however, that no edge of P is normal
to the line A, then only vertices of P can be extrema, and hence their number is bounded; moréover, a
bound on the number of extrema under the above assumption translates into a bound on the number of
maximal connected sets of extrema if the assumption is relaxed.

degeneracy degeneracy
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3. The Upper Bound.

Without loss of generality, we assume that we wish to compute the number of extrema with respect
to the z-axis of a polyhedron P. We additionally assume that no edge of P is normal to the z-axis, so
that we have a unique point-representative for every connected set of extrema; otherwise, we can use a
lexicographic ordering, which essentially corresponds to an infinitesimal tilting of the polyhedron. The
basic idea is to sweep P with a plane normal to the z-axis, and observe the changes in the intersection of P
with the plane: we call such an intersection a yz-cross-section of P. It is important to observe that for as
long as the plane sweeps the polyhedron without encountering a vertex, the corresponding yz-cross-section
changes conformally; therefore, we need to concentrate on how the yz-cross-section changes, as the plane
passes through a vertex; in particular, we need to focus only on the neighborhood of that vertex in the
cross-section. For simplicity, we use Cy,(v) to denote the yz-cross-section when the sweep plane is located
at the vertex v of the polyhedron; similarly, C;, (v) (C;,", (v) resp.) denotes the cross-sections infinitesimally
before (after resp.) the vertex v is reached. Depending on the geometry of the neighborhood of v in Cy. (v),
we distinguish the following cases:

1. The neighborhood of v in C,.(v) is a point-polygon (Figure 4): Then, v is an z-extremum.
Figure 4 depicts how the cross-section changes from C,(v) to C},(v), if v is a negative z-extremum;
the case for a positive z-extremum is obtained by interchanging the figures for C (v) and C},(v). The
definition of the polyhedron implies that as the sweep plane passes through v, either ezactly one new
polygon appears, or ezactly one polygon disappears in the cross-section.

2. The neighborhood of v in C,;(v) is a point-hole in a polygon (Figure 5): Then, v is not
an r-extremum, but it is like the vertex Z in Figure 3. Figure 5 depicts one of the two basic cases
that may arise; the other one results from Figure 5 after the figures for C},(v) and C; (v) have been
interchanged. In this case, the number of polygons in the cross-section does not change; mstead either
one new hole appears, or one hole disappears.

3. The degree of v in Cy.(v) is 2 (Figure 6): In this case, v belongs to a single polygon, which may
exhibit corrugations in the neighborhood of v in C}, (v) (Figure 6 shows two examples). In any case,
the total number of polygons in the cross-section does not change.

4. The vertex v is of degree larger than 2 in C,,(v): This is the really interesting case; this
time, the neighborhood of v in Cy.(v) consists of, say, w, wedges (w, > 2) that touch at v (w, = 4

G () Gi(v) . Gz (v) Gz (v)
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Figure 6
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in Figure 7), and it is a combination of the two cases shown in Figure 8, as well as those obtained
from Figure 8 in right-to-left order; the dashed curves indicate that some of the wedges may belong
to the same polygon of Cy.(v). These wedges may either merge with or split from neighboring wedges
in C,(v) and C;,(v). In Figure 7 for instance, as Cy;(v) evolves into C/.(v), the three bottom wedges
merge into a single wedge-cluster, while the top wedge forms a wedge-cluster by itself. Let w} and k;
(w; and k) denote the number of such wedge-clusters and the number of polygons containing these
clusters in Cf, (v) (C,,(v)) respectively (in Figure 7, we have w; = 3, w} = 2, and k; = k} = 2).
Clearly,

wy > wh > kf and  w, > wy > k. (1)

Moreover, the definition of a polyhedron (see Section 2) implies the following crucial observation:

if two wedges incident upon v in Cy;(v) merge in C,,(v), they have to split in

Observation 1: C;} (v), and vice versa.

Otherwise, we end up with degeneracies like the one exhibited at the object on the left in Figure 2.
In terms of w,, w;, and w], the observation can be expressed as follows (note that (w, — w;’) is equal
to the number of wedges that get merged in C,(v)):

(wy—wy) + (Wwy—w}) = w, -1 &= w;+w} = w,+1. 2)
A second crucial observation is:

if a vertex v is incident upon w, wedges in C,(v), then it is incident upon at

Observation 2: least w,, — 1 reflex edges of P.

This follows from the fact that when k wedges merge, they exhibit at least k — 1 reflex edges at the
merging “seams” (see Figure 7).

Depending on the case in which it falls, each vertex of P is put into one of four sets, say, V1, Vo, V3, and
Vi (corresponding to cases 1, 2, 3, and 4, respectively). Then,

G:(v) . Gy(v) Gz(v) Gz(v) G (v) Gz(v)
14

Figure 8
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Lemma 3.1. The total number |V}| of positive and negative z-extrema of a polyhedron does not exceed
Yvev, (Wo — 1) +2, where w, is as defined earlier.

Proof: Again, we assume that we sweep the polyhedron P with a plane normal to the z-axis. We construct
a graph that records the number of polygons in the history of the yz-cross-section; we concentrate only on
the cases where the plane encounters positive or negative z-extrema, or vertices in V,, since it is precisely
then when the number of polygons changes. In particular,

1. at a negative z-extremum (vertex in V;), we add to the graph two new nodest which we connect by
an edge; the first node corresponds to the negative z-extremum while the second one is a polygon-node
and corresponds to the series of polygons to which the negative z-extremum evolves;

2. at a positive z-extremum (vertex in V;), we add one new node that corresponds to the positive z-
extremum and we connect it to the polygon-node that represents the polygon which shrunk to this
positive z-extremum during the sweeping;

3. at a vertex v in V4, we add one new node that corresponds to v and edges connecting it to the
representatives of the k;” polygons in C,(v). Moreover, k} polygon-nodes are added, one for each of
the k} polygons in C/.(v), and edges are introduced between them and the node corresponding to v.

Since we are dealing with a single polyhedron, the resulting graph is connected. Figure 9(b) shows the
graph that corresponds to the
polyhedron of Figure 9(a). The
numbers 1, 2, and 3 denote
negative and positive z-extrema,
and vertices in V, respectively
(in agreement with the cases
above), while the letter P de-
notes polygon-nodes. Note that ' @

all polygon-nodes are of degree 2, Figure 9

and no two of them are adjacent.

Moreover, the nodes corresponding to negative and positive z-extrema of the polyhedron are of degree 1.
To simplify matters, we remove from the graph all polygon-nodes by coalescing their incident edges

into a single edge; the resulting graph is a connected multigraph (see Figure 9(c)), whose node set is in

one-to-one correspondence with the union of V; and V,. If we denote by m the total number of edges of

the multigraph, we have

2m = ) degree(v) = D 1+ Y (k;+k) < Vil+ Y (wo+1), (3)
node v veEV; veV, veEV,

since, for any vertex v € Vj, inequalities (1) and (2) imply that k; +k} < w; +w} = w,+1. Connectivity,
on the other hand, implies that the number of edges is at least equal to 1 less than the number of nodes
of the graph, that is, m > |V;| + |V4| — 1, which combined with (3) yields

2(Vil + Vil = 1) < Vil + 3 (wo +1).
veEV,

The lemma follows. g

¥ We refer to the nodes of a graph (instead of vertices) to avoid confusion with the vertices of the polyhedron.
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The desired upper bound on the number of extrema of a polyhedron follows as a consequence of
Lemma 3.1 and Observation 2.

Theorem 3.1. The total number of positive and negative z-eztrema of a polyhedron with r reflex edges
does not exceed 2r + 2.

4. The Lower Bound.

The above upper bound is in fact tight, since there is a pdlyhedron with r reflex edges that has 2r 42
extrema (for arbitrary r). Our construction involves the basic polyhedron shown in Figure 10: it looks like
a house whose corners u and v have
been pulled outwards along the di-
rection A; ¥ and v are the extrema
with respect to A. By gluing r + 1
of these polyhedra together at their

shaded facets, we get a polyhedron
with r reflex edges and 2(r +1) ex- Figure 10 Figure 11

trema with respect to A (Figure 11).

5. Conclusions.

In this paper, we established a tight bound on the number of extrema of a three-dimensional polyhe-
dron in terms of the number r of its reflex edges. We first proved a 2r +2 upper bound, which we matched
by exhibiting a polyhedron that has r reflex edges and 2r + 2 extrema with respect to some direction, for
. every integer r > 0.

The open question that immediately comes to mind is what happens in higher dimensions. What is
the number of extrema (with respect to some direction) of a d-dimensional polyhedron? What is needed
first, however, is a measure of non-convexity of such a polyhedron. How do the notions of reflex vertices of
a polygon and reflex edges of a 3-dimensional polyhedron generalize in four and higher dimensions?
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