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Abstract
In this paper, we present an algorithm for finding the greedy triangulation of a set of n points in
E?. The algorithm requires @(n log n) time and ©(n) space, which is worst-case optimal.

1 Introduction

A triangulation of a set S of points (call them sites) in E? is a subdivision of the plane such
that the vertices of this subdivision are the sites of S and every region internal to the convex hull of
S is a triangle.

Let L be the set of line segments connecting all pairs of the sites of §. The greedy triangulation
of §, denoted by GT'(S), is a triangulation of S obtained by repeatedly selecting the shortest segment in
the remainders of L and inserting it into the partial GT'(.S) if it does not cross any segment previously
inserted (called the greedy edge).

Using a brute-force method to test the crossings of the selected segments and the greedy edges
in the partial GT(S) for finding GT(S) may take O(n®) time and O(n?) space. The first non-trivial
algorithm for speeding up this test was proposed by Gilbert [3], which requires O(n? log n) time and
O(n?) space. Whether or not one can design an o(n’log n) time and o(n?) space algorithm for the
problem became an open problem [1]. These complexity bounds remained unchanged for almost a
decade until Lingas [8] (and later, Goldman [5] independently) improved the space bound to O(n) and
Levcopoulos and Lingas [10] (and later, Wang [15] independently) improved the time bound to O(n?).

Levcopoulos and Lingas [11] proposed a linear expected-time algorithm for constructing the greedy
triangulation of S if § is uniformly distributed in a unit square. Dickerson, Drysdale, McElfresh, and
Welzl [4] proposed an O(n log n) expected-time algorithm for the problem when S is uniformly
distributed in any convex shape.

In this paper, we proposed an optimal deterministic algorithm to solve this problem. For sim-
plicity, we use C DT and GT to denote constrained Delaunay triangulation and Greedy triangulation,
respectively. The edges and the triangles of GT (CDT) are called the greedy (Delaunay) edges and
greedy (Delaunay) triangles, respectively. All the proofs of the lemmas are omitted in this conference

version. Those readers interested in the paper can find the details in reference [16].

!This work is supported by NSERC grant OPG0041629.
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2 Preliminaries

Let L be a set of non-intersecting obstacle line segments, and let S be the sites containing all the
endpoints of these obstacles.

Definition: The CDT of S in the presence of L, denoted by CDT(S, L), is a triangulation of S
such that the edge set of C DT(S, L) contains all the elements of L, and the interior of the circumcircle
(called Delaunay circle) of any triangle of CDT(S, L), say Ass’s”, does not contain any element of
S —{s,s',s"} visible to s, s’, and s”. The CDT of a simple polygon P, denoted by C DT(P), is defined -
similarly, where the vertices of P are the vertices of the triangulation and the boundary edges of P
are the obstacles. For our purpose, only the part of C DT(P) internal to P is considered.

We use the following notations in the rest of the paper:

e DT(S) denotes the standard Delaunay triangulation of S, Epr(s), its edge set.

e 1/ denotes the number of edges of GT'(S); E4(n') denotes the edge set of GT(S).

e the process of finding the GT(.5) is said to be in stage k for 1 < k < n’ if the kth shortest
greedy edge has just been inserted into the partial greedy triangulation.

A notation with argument k£ means that the object represented by this notation

is in the kth stage of the process.

o E,(k) denotes the subset of E4(n') which consists of the first k shortest edges; The edges of
E,4(k) are regarded as obstacles in stage k < [ < n’; Consequently, a greedy triangle in stage k
is formed by its three elements belonging to E,(k).

¢ CDT(S, Ey(k)) denotes the CDT of S in the presence of obstacles E4(k).

e ¢,(k + 1) denotes the (k + 1)th greedy edge to be inserted to GT'(.5).

e E.i(k) denotes the subset of the edge set of CDT(S, E4(k)) such that E 4(k) N Ey(k) = 0.

e E4(k) denotes the remainder of Epr(s) in stage k. Note that E4(0) = Eca(0) = Epr(s)-

e E (k) denotes the set of edges such that each edge of E (k) together with two edges of E,(k)
form a triangle, and no edge of E (k) belongs to E,(k) U Epr(s) or crosses any edge of Ey(k).

o Let ()ss’ denote the lune with radius ss’ and with centers s and s'.
o Let Oss’ denote the circle with ss’ as the diameter and with s and s’ on its boundary.

Lemma 2.1: [Theorem 3.1, 10] Greedy edge e,(k + 1) is either an edge of E.4(k) or an edge of
E.(k)for 0< k<7

By Lemma 2.1, the next greedy edge e4(k+1) can be found from E.4(k)UE.(k). By adding ey(k+1)
to E4(k) and finding CDT(S, Eq(k) U {eg(k + 1)}) for k = 1 to n’ — 1, we obtain GT(.S). Clearly, the
time complexity of this method is dominated by the time for finding C DT(S, E4(k) U {ey(k +1)}) for
k=1ton' —1when CDT(S, E,(k)) and e4(k + 1) are available.

A further inspection shows that we need not update the entire CDT(S, E,(k)). If ey(k + 1) is
an edge of E.q(k), then the edge set of CDT(S, E4(k) U {eg(k + 1)}) remains the same as that of
CDT(S, E4(k)), while if eg(k + 1) is an edge of E.(k), then the two edge sets are different only locally.
In the latter case, let edge e,(k + 1) together with edges e and e’ of E (k) form a greedy triangle and
let u be the endpoint shared by e and e’. Then, e,(k + 1) crosses some of those Delaunay triangles of
CDT(S, Ey4(k) incident at u, say T. In order to update C DT(S, E,(k) U {ey(k + 1)}), it is sufficient
to re-build the C'DT of the area that covers T, where the area forms a special polygon P.
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Algorithm 1 formalizes the above idea. Let P denote the polygon induced by e (k + 1). Let
CDT(P) denote the internal part of CDT of P. Operator min chooses the shortest edge in a set.

Algorithm 1
INPUT: §
OUTPUT: GT(S)
METHOD:
1. k — 0; Eg(k) «— 0; CDT(S, E4(k)) « DT(S).
(* after initialization, E.(0) = 0, E,(k) = 0, and E4(0) = Epr(s) *)
2. While (E,4(k) is not a complete edge set of GT(S)) Do
(a) eg(k + 1) — min(Eca(k) U E.(k)); Eg(k+ 1) — Eg(k) U {eg(k + 1)};
(* select a greedy edge according to Lemma 2.1 *)
(b) If (eg(k + 1)eE,(k)) Then find CDT(S, Ey(k) U {eg(k + 1)}) by finding C DT (P);
(* find CDT(P) in linear-time using the method in [10,15] *)
(c)k —k+1;
EndDo.

Theorem 2.1: [Theorem 3.2, 10, 15] Algorithm 1 finds GT(S) in O(n?) time and O(n?) space.

3 Finding the GT of S

As CDT(S, Ey(k)) is a planar graph, the number of edges in CDT(S, E4(k)) is O(n). Then, the
number of edges in E.(k) is also O(n) by the definition of E (k). Thus, Algorithm 1 requires at least
O(n?) time. This is because there may exist O(n) greedy edges from the edges of E.(k) for k < n’
such that each of them crosses O(n) Delaunay edges, which requires {(n?) update operations to obtain
CDT(S,E4(k) U {eg(k + 1)}) for k = 0 to O(n).

We shall resolve this difficulty by avoiding updates of the constrained Delaunay triangulations in
Step 2(b) of Algorithm 1. To do so, in Section 3.1,' we introduce a special region, called the nest
region, which is the union of the special polygons. Each of these special polygons is bounded by some
edges of E4(0), and is induced by inserting a greedy edge originally belonging to E.(k). Inside such a
nest region, the Delaunay edges of E.4(0) are removed and the region will not be further Delaunay-
triangulated. Our new algorithm also starts at DT'(S), picks up the greedy edges in ascending order
with their lengths and inserts them into DT'(S) and its subsequent figures one by one, until the figure
becomes GT(S). At the kth stage, the subsequent figure consists of a set of nest regions and their
subregions, called cores bounded by some of E4(k)U E4(k). The remaining problem is how to find
the next greedy edge since Step 2(a) of Algorithm 1 is no longer functioning. This is because Lemma
2.1 does not work due to the nest regions are not Delaunay-triangulated. We shall prove in Lemma
3.6 that the next greedy edge e,(k + 1) must belong to Ey(k) U E.(k) U SP(k), where SP(k) is one
type of candidates of greedy edges called spines. Thus, at the kth stage, the ‘configuration’ of our
algorithm consists of the subsequent figure and a set of extra edges: E.(k) and SP(k) with respect

to the boundary edges of the nest regions and cores. We shall further show some properties of nest
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regions and cores in Sections 3.1 and 3.2 so that the spines can be calculated quickly. Consequently,
GT(S) can be found quickly.

3.1 Some properties of cores and nest regions

Definition: A nest-region (in stage k), denoted by NR , is a connected region without holes such
that its boundary consists of some edges of E;(k) and some edges of E,(k) originally belonging to
E4(0). A core of an NR (in stage k) is a subregion of the NR separated by some edges of Ey(k).
A convex subchain of core ¢ (in stage k) is a piece of the boundary of ¢ such that every edge of the
subchain belongs to E,(k) and the inner angle of every interior vertex of the subchain is reflex. Two
distinct nest regions are to be merged into an new nest region if they share an edge e of Ey(k) in
stage k and if e is crossed by a greedy edge of E4(j) for k < j < n'.

(Remark: The purpose of introducing the concepts of NR and core is to design a data structure
for ray-shooting such that the candidates SP(k) can be found quickly. For simplicity, we omit term

‘in stage &k’ for an NR or a core while it is understandable from the context.)

Definition: Let e, €/, and ey4(k) of E4(k) lie on an NR such that they form a greedy triangle,
where e4(k) originally belongs to E (k — 1). Let also b be the ray on the perpendicular bisector of e,
emitting from the midpoint of e towards ey(k), and let ¥ w.r.t. ¢ be defined similarly. Then, b and
§ will cross the boundary of the NR as well as the boundary of the core ¢, where the boundary of
c contains ey(k). Let p’ and ¢’ be the two first crossover points on the boundary of this VR and let
p and ¢ be the two first crossover points on the boundary of this c. If b (I;; ) reaches p’ (¢') before it
crosses b/ (5), then p’ and ¢’ delimit a piece of the boundary of NR not containing e and e’, denoted
by ¢, = p”E’, and p and q delimit a piece of the boundary of core ¢, denoted by c; = pg and called
the upper base. Upper base c; is defined to be empty if it does not contain any vertex of the NR
or b and ¥ cross each other before they reach p’ and ¢’, respectively. A convex subchain of ¢ with an
endpoint of e,(k) as an extreme is denoted by c. and called a lower base. There exist exactly two
lower bases and at most one upper base of ¢ w.r.t. ey4(k).

Definition: The spine of the core of the NR w.r.t. ey(k) of E;(k—1) is the shortest edge between
the vertices of ¢, and the vertices of c. such that the endpoints of the edge are visible each other.
Clearly, the spine must lie inside the core and may not exist if ¢, is empty. Let SP(k) denote the set
of spines in stage k. (Refer to Fig. 3.1 (a) and (b). for these deﬁnitions.)

Definition: Let ss’ be the greedy edge eg(k + 1) not belonging to Ey(k) U Ec(k). Let B be a
subset of E4(k), each of which intersects ()ss’ so that any site lying inside ()ss’ is not visible to s
and s’ due to the collective blockages of these edges. The critical blocking edges are a subset of
B, denoted by Ej; each of E; intersects Oss’, blocks the lines of sight of at least one site in ()ss’ to
s and s’, and its two endpoints lie on or outside ()ss’ such that the interior of the area bounded by

| — —
ss!, 553, 5s;, and s's, (or the interior of the triangle Ass’s;) contains no sites, where s; and s, are
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the intersection points of this edge and the boundary of ()ss’. A pseudo critical blocking edge is a
special blocking edge such that only one of its endpoints, say s, lies in ()ss’ and s, is immediately
blocked by a critical blocking edge. For simplicity, both the critical and pseudo critical blocking edges
are denoted by E,. (Refer to Fig.3.2(a)(ii), Fig.3.2(b)(iv), and Fig.3.2(b)(v) for the definition.)

The following five lemmas lead to that the (k+1)th greedy edge is an edge of E4(k)U E.(k)USP(k).

Lemma 3.1: Let ss’ be the greedy edge e,(k + 1) not belonging to E4(k) U E.(k). Then, there
exists a set of edges Ej in stage j < k, such that none of the sites lies inside ()ss’ is visible to s and
s’ in stage j due to the blockage of Ey. E, contains at least an edge e, which block the line of sight
of a site 7 in Oss’ to s and s'.

Lemma 3.2: Let ss’ be the greedy edge ey(k + 1) not belonging to E4(k) U E.(k). Then, s and
s’ belong to the boundary of the same NR in stage j < k, and the NR contains an e, for some r in
Oss'.

Lemma 3.1 and Lemma 3.2 imply that there exists an e,eE} in stage 7 < k such that every point

of e, in ()ss’ is visible to s and s’.

Let tt’ be the segment of the line supporting Oss’ and ¢ and ¢’ lie on the boundary of ()ss’. Let
gg’ and ¢’s be defined similarly. Let ¢ be an intersection point of circles 03,237 and O, 77 with s (s)
as center and ss’ as radius. Let d be the intersection of ss’ and #Z,. (Refer to Fig. 3.2 (b).)

Lemma 3.3: Let ss’ be the greedy edge e,(k + 1) not belonging to E4(k) U E¢(k). Then, by
Lemma 3.1 there exists a set E;. Then, each of E} can be in only one of the following three cases: (1)
it crosses arc Sc exactly twice or it crosses arc cs' twice, (2) it crosses arc st and arc t'c respectively
or it crosses arc .;’Tq and arc g;'\c respectively, and (3) it crosses arc .s,’?q and arc st respectively. (Refer
to Fig.3.2.)

Lemma 3.3 implies that there always exists a critical (or pseudo critical) blocking edge e, of Ej
which determines two perpendicular bisectors such that the two bisectors determine the upper and
lower bases w.r.t. e,.

Lemma 3.4: Let ss’ be the greedy edge e,(k + 1) not belonging to Eq(k) U E.(k). Then, s and
s’ belongs to the vertices of the upper and lower bases with respect to some edge of Ej, respectively,
and s’ is a spine on the core with respect to this edge of E.

Lemma 3.5. Edge e,(k + 1) belongs to E (k) U Eq4(k) U SP(k).

3.2 The final algorithm

The remaining problem is how fast the spines can be found. The following two lemmas show that the
spines can be found in logarithmic time using ray shooting method.

Lemma 3.6. Let e,(k + 1) (=ss’) be the spine of the core ¢ of the NR w.r.t. e.(= 5;3;), then s
lies on the convex subchain ¢, and ' lies on a convex subchain ¢’ of c,, and ss’ can be determined in

logarithmic time if ¢; and c. are available. (Refer to Fig.3.3.)
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The remaining problem is to show that the bases of the spine w.r.t. eg(k+ 1) (e E;(k)) for ke[l,7n/]
can be calculated in logarithmic time so that the spine can be determined in logarithmic time by
Lemma 3.6. Note that the number of spines created is proportional to that of edges of Eq4(k + 1)
originally belonging to E.(k), then finding these spines takes at most O(n log n) time.

Note by definition that ¢, w.r.t. ey(k + 1) (¢E:(k)) belongs to the core ¢ of the NR containing
eg(k + 1), and it is delimited by the crossover points of the rays b and ¥ of e and e’, where e, ¢,
and ey(k + 1) form a greedy triangle. These crossover points can be found by directly applying the
ray-shooting method to the core. However, because the cores may expand, shrink, and split, it is
difficult to maintain such a ray-shooting data structure within O(n log n) time bound.

Alternatively, we can use the portion of DT(S) on the nest regions as a data structure to support
the ray-shooting operation on an NR. Such a data structure is easy to maintain because the boundary
of an NR belongs E4(0) and an NR can only expand. We then use another data structure to connect
NR and its cores. Using this connecting data structure, we can quickly locate the corresponding
crossover point of the core and the shooting ray if the crossover point of the NR and the ray is known.

Lemma 3.7: Let e4(k + 1) belong to E;(k) and let ¢ be the core containing e4(k + 1) and NR be
the nest region containing c. Then, the corresponding c¢; and ¢, of ¢ can be found in O(log | NR |)
time.

(Remark: The best known ray-shooting algorithm for a simple polygon with & holes and total of
n vertices takes O(1/(k)log n) time [14]. In our particular case, the ray may cross several nest regions,
but these nest regions are also crossed by e4(k + 1)eE(k), which allows us to achieve logarithmic time
bound.)

Theorem 1: GT(S) can be found in O(n log n) time and O(n) space, where n =| S |.
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