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Triangulating with High Connectivity -

Tamal Krishna Dey*

ABSTRACT

We consider the problem of triangulating a given
point set, using straight-line edges, so that the
resulting graph is “highly connected.” Since the
resulting graph is planar, it can be at most 5-
connected. Under the nondegeneracy assumption
that no three points are collinear, we characterize
the point sets with three vertices on the convex hull
that admit 4-connected triangulations. More gen-
erally, we characterize the planar point sets that
admit triangulations having neither chords nor non-
complex (i.e., nonfacial) triangles.

1 Introduction

We consider the problem of obtaining a planar net-
work of maximum connectivity when the vertex lo-
cations are specified and only straight-line edges are
allowed. Given a finite planar point set S and an
integer k, we say that S is k-connectible if there ex-
ists a k-connected planar graph with straight-line
edges having vertex-set S.

Planar point sets that are 1-, 2-, and 3- con-
nectible are easily characterized, and no planar
point set is k-connectible for £ > 5. OQur main result
is a characterization of the conditions under which
a planar point set in general position and having
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exactly 3 extreme vertices is 4-connectible (Theo-
rem 3.2).! This is actually a consequence of a more
general theorem, Theorem 3.1, which characterizes
the conditions under which a planar point set in gen-
eral position can form the vertices of a triangulation
having neither chords nor complex (i.e., nonfacial)
triangles. One consequence of these results is that
any planar point set in general position becomes 4-
connectible if we are allowed to add 2 additional
(Steiner) points (Theorem 3.6). All our proofs are
constructive, and the graphs can be constructed in
O(nlogn) time. In Section 4, we conclude and state
several open problems. We omit several proofs and
include only sketches of others; details can be found
in the full paper.

We know of no previous work on the problem of
determining whether a given set is k-connectible.
In a sense, this problem is the inverse of the prob-
lem of drawing a planar graph, which has been the
subject of considerable attention [2]. In particular,
our results complement recent work, motivated by
floorplanning problems in VLSI circuit design, con-
cerning layout of triangulations having no complex
triangles. A floorplan in VLSI circuit design is es-
sentially a dissection of a rectangle into a finite num-
ber of non-overlapping sub-rectangles. It is known
that a triangulated planar graph has a rectangular
dual which is a floorplan only if it does not have a
complex triangle [5]. Triangulations without com-
plex triangles have been previously studied from a
purely graph-theoretical perspective by one of the
authors [3].

!By general position, we mean that no three points are
collinear. Most of the terms used in this section are defined
in Section 2.
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2 Preliminaries

Let S be a finite set of planar points. A triangu-
lation of S is a planar graph T with vertex-set S
such that all edges are line segments, the bound-
ary of the outer face is the boundary of the convex
hull, and all faces of T' with the possible exception
of the exterior face are bounded by triangles. A
chord of a triangulation T is an edge connecting
two nonconsecutive vertices on the boundary, and a
complez triangle is a triangle that does not form the
boundary of a face; see Figure 2.1. A triangulation
is said to be noncomplez if it has neither chords nor
complex triangles.

A graph is k-connected if it remains connected
whenever k — 1 vertices and their attached edges
are removed. A planar point set S is k-connectible
if there exists a k-connected planar graph with ver-
tex set S such that all edges are line segments. Since
adding edges to a graph cannot decrease the connec-
tivity, S is k-connectible iff there is a k-connected
triangulation with vertex set §.

The following characterizations of k-connected
triangulations are immediate consequences of re-
sults established in [4].

Lemma 2.1 A triangulation is 3-connected if and
only if it does not have a chord.

Lemma 2.2 A triangulation T is 4-connected if
and only if

(A1) T does not have a chord.
(A2) T does not have a complex triangle.

(A3) Nointerior vertex is connected to two or more
non-consecutive vertices on the boundary of T'.

Figure 2.1: Chords and complex triangles: ab is a
chord, and the three dark vertices form the bound-
ary of a complex triangle. -

Figure 3.1: A planar point set that does not admit
a noncomplex triangulation.

3 Characterizing point sets admitting non-
complex triangulations

We assume throughout this section that our point
sets satisfy the general-position assumption intro-
duced in Section 1: no three points are collinear.
We also assume that all point sets have at least four
points.

The planar point set S shown in Figure 3.1 does
not admit a noncomplex triangulation. Indeed, in
any triangulation of §, vertex z must be connected
to every other vertex, as are consecutive vertices
around the convex set S — {z}. Any triangulation
of § must also contain a chord of the convex hull of
S — {z}. This chord and the two edges joining its
endpoints to 2 form a complex triangle.

Theorem 3.1 states that the example of Figure 3.1
is essentially the only 3-connectible planar point set
that does not admit a noncomplex triangulation.
The proof of Theorem 3.1 is constructive, and leads
to an O(nlogn) algorithm for constructing a non-
complex triangulation if one exists.

The following definition captures the salient prop-
erties of the example of Figure 3.1. A planar point
set is anomalous if it contains a point z such that
the following properties hold:

(B1) S has exactly three extreme vertices, one of
which is z.

(B2) The set S — {z} consists of the vertices of a
convex polygon, P.

Theorem 3.1 If S is a planar point set in general
position, then S admits a noncomplex triangulation
if and only if (1) it is not anomalous, and (2) it is
not the set of vertices of a convex polygon.

Theorem 3.2 If S is a planar point set in general
position, with exactly three points on the convex



hull boundary, then S is 4-connectible if and only if
it is not anomalous.

Theorem 3.2 is an immediate consequence of The-
orem 3.1 and Lemma 2.2. The necessity of con-
ditions (1) and (2) in Theorem 3.1 follows from
Lemma 2.1 and the preceding discussion of Fig-
ure 3.1. To establish sufficiency of these conditions,
we show how to construct a noncomplex triangula-
tion of a planar point set satisfying conditions (1)
and (2).

Our construction relies heavily on the conver
layer structure {1]. The outermost convex layer of
S is the boundary of the convex hull, and each sub-
sequent convex layer is defined recursively, to be
the boundary of the convex hull of the set obtained
by removing the vertices of all previously defined
convex layers from S. We let £ be the number of
convex layers, with layer 1 the outermost layer and
layer k the innermost layer. All layers except the
innermost layer consist of convex polygons. The in-
nermost layer may consist of either a single point,
a line segment, or a convex polygon. If k =1, §
forms the vertices of a convex polygon, so we may
assume that & > 2.

Our construction also involves adding edges be-
tween two consecutive layers derived from the con-
vex layer structure to create a triangulation of the
region between the two layers. The edges that have
an endpoint on each of the two layers are called
cross edges.

Consider the following strategy: compute the
convex layers of S, triangulate the innermost layer
(if it is a convex polygon), and compute a triangu-
lation of each region between each two consecutive
convex layers using only cross edges. If we attempt
to use this strategy to produce a noncomplex trian-
gulation, it can fail in one of three ways. First, a
chord in the innermost layer may participate in a
complex triangle. Second, one of the triangulations
between regions may produce a complex triangle
consisting of two inter-layer edges and one edge from
the inner or outer layer. Third, if any intermediate
- convex layer is a triangle, the strategy clearly fails.
With appropriate modification, however, these dif-
ficulties can be overcome for non-anomalous point
sets.

The following lemma allows us to extend non-
complex triangulations from one layer to the next
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layer.

Lemma 3.3 Let A and B be two polygonal layers
satisfying the following properties: (i) A is convex
containing B inside where |B| > 3, (ii) The region
between A and B is triangulated with cross edges,
(iii) The polygon with the boundary B is triangu-
lated without any complex triangle, and there is no
complex triangle incident on a chord of B. Then
a non-complex triangulation of the region inside A
can always be constructed.

Assume k£ > 3. For j = 1,...,k — 2, define a good
level-j triangulation to be a triangulation for which
the following properties hold: (i) The boundary of
the outer face consists of layer j, (ii) All points of
S inside the boundary are vertices of the triangu-
lation, (iii) The triangulation contains no chords or
complex triangles. The proof of Theorem 3.1 for
k > 3 follows immediately from the following two
lemmas, since a noncomplex triangulation is simply
a good level-1 triangulation:

Lemma 3.4 S has a good level-(k — 2) triangula-
tion.

Lemma 3.5 Given a good level-j triangulation, for
2 < j < k-2, we can construct a good level-(j — 1)
triangulation.

Proof of Lemma 3.4: Let A be layer k£ — 2, B layer
k—1, and C layer k. We distinguish six cases, which
we group as follows. B may be either a polygon hav-
ing more than three vertices (Part I) or a triangle
(Part II). Within each part, C may consist of a sin-
gle vertex (|C| = 1), a line segment (|C| = 2), or a
convex polygon (|C| > 2).

Part |: B is not a triangle: We first obtain a good
triangulation of the region inside B using the ap-
propriate case (1, 2, or 3) below. We then extend
this triangulation to a good triangulation of the re-
gion inside A using Lemma 3.3.

Case 1, where |C| = 1 and Case 2, where |C| = 2
can be handled easily. We omit the details.

Case 3: |C| > 3: C is the boundary of a convex
polygon, inside B. First, compute some arbitrary
triangulation of the region between C and B using
cross edges. Let R be the set of vertices of C that are
connected to two or more vertices of B. R contains
at least two vertices of C. There are two subcases,
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depending on whether R contains two nonconsecu-
tive vertices of C.

Subcase 3a: R contains two nonconsecutive vertices
of C. Let ¢; and ¢, be a pair of nonconsecutive
vertices of C' in R (see Figure 3.2(a)). Removing
these two vertices from the boundary of C creates
two nonempty arcs, C’ and C”, so no vertex of B
can be joined to a vertex of C’ and a vertex of C”.
Hence if C is triangulated using only edges with
one endpoint on C’ and the other on C” (in other
words, triangulated so that ¢; and ¢, are ears), then
no such edge can participate in a complex triangle.
This produces a triangulation T containing layers
B and C that satisfy all conditions of Lemma 3.3.
Hence, T can be modified to be a non-complex tri-
angulation.

Subcase 3b: R contains only a single pair of consec-
utive vertices of C, ¢; and co. This subcase is illus-
trated in Figure 3.2(b). Then all vertices of C are
joined to a single vertex z of B. Assume that c; is
the counterclockwise neighbor of ¢; on C; let ¢} be
the clockwise neighbor of ¢;, ¢ the counterclockwise
neighbor of ¢;. If C is a triangle, then ¢} = cj, but
that does not affect the following argument. Now
let z; and z; be, respectively, the counterclockwise
and clockwise neighbors of z about the boundary
of B. If the segment z,c; does not intersect the
interior of polygon C, then we can obtain a good
triangulation by flipping edge zc;, and triangulat-
ing the interior of C' by joining c¢; to every vertex
of C. If the segment z,c5 does not intersect the in-
terior of polygon C, a similar construction works.
Suppose neither of these last two conditions holds;
then segments z,¢} and z¢} both intersect segment
cic2. Let 2/ be the counterclockwise neighbor of z,
about B. Since B is not a triangle, z’ # z,. Since B
is convex, a good triangulation can be obtained by
deleting edge cjc, and connecting z’ to every vertex
of C.

Once the appropriate case (1, 2, or 3) is handled,
use cross edges to triangulate the region between A
and B. Apply Lemma 3.3, if necessary, to produce
a good level-(k — 2) triangulation.

Part II: B is a triangle: Let B = b;byb3. We need
to delete at least one edge of B. Consider the ar-
rangement of the three lines that support the three
edges of B. This arrangement has seven planar re-
gions: the triangular region B, and six other regions
exterior to the triangle. Call the three exterior re-

C1

c2

(a) (b)

Figure 3.2: Obtaining a good triangulation when
the first two layers are convex polygons. (a) Sub-
case 3a: ¢; and c; are two nonconsecutive vertices
of the inner polygon that have two neighbors on
the outer polygon. (b) Subcase 3b: ¢; and ¢, are
consecutive, and are the only two vertices of the in-
ner polygon that have two neighbors on the outer

polygon.

gions bounded by three lines type-1 regions, and the
three exterior regions bounded by two lines type-2
regions.

We borrow one vertex p from A to augment B to
a quadrilateral, B’. If A contains any vertex in a
type-1 region, we show that we can choose p to be
a vertex in a type-1 region. This means that the
resulting quadrilateral is convex. If there is no ver-
tex in any of the type-1 regions, we choose p from
one of the type-2 regions. In this case the result-
ing quadrilateral will be non-convex only at a single
vertex. It can be shown that a good triangulation
of B’ can be constructed which can be extended to
a triangulation of A. We omit the details here.

Proof of Lemma 3.5: Using constructions of Case 3
and Lemma 3.3 we can extend a good level-j trian-
gulation to a good level-(j — 1) triangulation.

Proof of Theorem 3.1: To complete the proof of
Theorem 3.1, it suffices to address the case k = 2.
If the outer layer has 4 or more points, the existence
of a noncomplex triangulation follows immediately
from the constructions in Part I of Lemma 3.4. So
suppose the outer layer has 3 points. If there is
exactly one point inside, the unique possible trian-
gulation is noncomplex. If there are exactly two
points inside, the configuration is anomalous. The
remaining case where the inner layer consists of a



convex polygon and the configuration is not anoma-
lous can be handled using constructions of Lemma
3.4. Details are omitted.

The following two theorems are easy conse-
quences of our constructions.

Theorem 3.6 A planar point set S in general po-
sition can be augmented using at most two extra
points so that it admits a 4-connected triangula-
tion.

Theorem 3.7 Given a planar point set S in gen-
eral position, in O(nlogn) time we can either con-
struct a non-complex triangulation of § if it admits
one, or report that no such triangulation exists.

4 Conclusions and open problems

In this paper we have characterized the point sets
that admit a noncomplex triangulation. This solves
the question of 4-connectibility for a point set with
three extreme vertices. However, it does not solve
the 4-connectibility problem in general, and this
problem remains open.

Figures 4.1 and 4.2 illustrate two ways that a
planar point set can fail to be 4-connectible. The
set shown in Figure 4.1 fails to be 4-connectible
because there are fewer interior points than con-
vex hull edges. Any triangulation of this point set
must either have a chord, violating condition(A1l)
of Lemma 2.2, or two triangles having distinct con-
vex hull edges as their bases but sharing an interior
point as their common apex. In the latter case,
condition (A3) of Lemma 2.2 is violated. Figure 4.2
also fails to be 4-connectible, even though it has
more interior points than convex hull edges. To see
this, note that if a 4-connected triangulation of this
set exists, then one of the circled points (call it p)
would have to be connected to y; otherwise z and
z would have a common interior neighbor, violating
(A3). But then p is connected to both w and y, so
(A3) fails anyway.

We have not addressed the condition of 5-
connectibility. It follows from the results in [4] that
a triangulation is 5-connected if it satisfies condi-
tions (A1)-(A3), has no complex (i.e., nonfacial)
quadrilateral, and has no interior edge connected to
two or more nonconsecutive boundary vertices. A
simpler problem than general 5-connectibility might
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Figure 4.1: A point set that admits a noncomplex
triangulation but is not 4-connectible.
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Figure 4.2: A point set that admits a noncomplex
triangulation but is 4-connectible, even though it
has more interior points than convex hull points.

be characterizing those planar point sets that admit
triangulations without complex quadrilaterals.

Finally, we briefly discuss the general position as-
sumption made in this paper, namely that no three
points are collinear. There are non-anomalous point
sets, not in general position, that do not admit a
non-complex triangulation. One such point set is
obtained by placing points on three lines meeting
at the origin.
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