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Optimal Tetrahedralization of the 3d-Region “Between”
a Convex Polyhedron and a Convex Polygon t
(Extended Abstract)

Leonidas Palios
The Geometry Center, Univ. of Minnesota

Abstract: In R3, we consider a convex polyhedron P and a convex polygon Q, whose
supporting plane does not intersect P; we are interested in tetrahedralizing the closure of
convex_hull(P U Q) \ P, i.e., the portion of R? that along with P forms the convex hull of
P U Q. This problem is motivated by the more general problem to tetrahedralize the region
“between” two three-dimensional convex polyhedra that do not intersect, called the side-by-side
case by Bern in [2]. Bern solves the former problem by applying his algorithm to tetrahedral-
ize the region between the boundaries of two nested convex polyhedra; if the total number of
vertices of both P and Q is n, his approach yields an O(nlogn) size tetrahedralization without
introducing Steiner points, i.e., new vertices. In this paper, we describe a novel approach that
yields an optimal tetrahedralization, that is, O(n) tetrahedra and no Steiner points; the tetra-
hedralization is compatible with the boundary of the polyhedron P, and it can be computed in
optimal O(n) time. Our result also implies an improved algorithm for the side-by-side case; the
region “between” two non-intersecting convex polyhedra of total size n can be partitioned into
O(n) tetrahedra using O(n) Steiner points; as above, the tetrahedralization is compatible with
the boundaries of the two polyhedra, and it can be computed in O(n) time.

1. Introduction.

Given a convex polyhedron P and a polygon Q in R® such that Q’s supporting plane does not intersect
P, we are interested in tetrahedralizing the closure of the difference (convex_hull(P U Q) \ P). The problem
is motivated by the side-by-side case (Bern [2]): given two non-intersecting convex polyhedra P, and P, in
R?, tetrahedralize the closure of the difference (convexhull(P,UP;) \ (P,U P,)). In [6], Goodman and Pach
showed how this problem can be solved in arbitrary dimension without introducing Steiner points (i.e., new
vertices); in R3, their algorithm produces a tetrahedralization whose size is quadratic in the combined size
of P, and P,; this was proved optimal in the worst case, thanks to a matching lower bound by Bern ([2]).
Bern also mentioned an algorithm that yields a subquadratic tetrahedralization at the expense of introducing
Steiner points: the idea, due to Halperin, is to slice the convex hull of P; and P, with two parallel planes
that do not intersect the polyhedra; this results into partitioning the hull into a cylindrical piece in the center
and two end-pieces, each defined by one polyhedron and a convex polygon (the intersection of the convex hull
and a slicing plane). Since the slicing planes do not intersect the polyhedra, the problem of tetrahedralizing
each of the end-pieces is precisely the problem that we consider in this paper. To solve it, Bern applies his
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algorithm to tetrahedralize the region between the boundaries of two nested convex polyhedra, which produces
O(nlogn) tetrahedra (n is the combined size of the two polyhedra) without Steiner points.

We also mention that Chazelle and Shouraboura have recently described an algorithm that partitions the
region between two convex polyhedra (that may be disjoint, nested, or overlapping) into a linear number of
tetrahedra [4]; their approach, however, introduces Steiner points.

In this paper, we describe a novel approach to tetrahedralize the closure of (convex_hull(PUQ)\ P) for
a convex polyhedron P and a convex polygon Q whose supporting plane does not intersect the polyhedron;
if the combined size of the polyhedron and the polygon is n, our algorithm produces at most 11n — 24
tetrahedra and does not introduce Steiner points. Another important feature is that the tetrahedralization
is compatible with any triangulation of the boundary of the polyhedron. The algorithm, however, imposes
an appropriate triangulation on the polygon; that should be expected, since a simple extension of Bern’s
quadratic lower bound for the side-by-side case [2] implies that tetrahedralizations compatible with both
the boundary of the polyhedron and a triangulation of the polygon may be of quadratic size in the worst
case. The tetrahedralization can be computed in O(n) time. Moreover, it can be easily extended to an
O(n) tetrahedralization of R® without Steiner points by adding the tetrahedra that partition P and the
complement of the convex hull of P U Q. Returning to the side-by-side case, the combination of our result
with Halperin’s idea yields an O(n) size tetrahedralization with O(n) Steiner points in O(n) time (n is the
size of the polyhedra).

The paper is structured as follows: Section 2 reviews the basic definitions, and presents two important
lemmas. The key ideas of our algorithm are discussed in Section 3, and the algorithm is described in detail in
Section 4. Section 5 summarizes our results and poses some open questions.

2. Definitions.

A polyhedron in R3 is a connected piecewise-linear 3-manifold with boundary that is connected and
consists of a collection of relatively open sets, the faces of the polyhedron, called vertices, edges, and facets,
~ if their affine closures have dimension 0, 1, or 2, respectively. Let us consider a convex polyhedron P and a
convex polygon Q (also in R?) whose supporting plane does not intersect P. Then, the convex hull H (PUQ)
of P U Q properly contains P, and Q contributes one of the hull’s facets, which is diametrically opposite any
facets of the hull contributed by P; this is why we refer to the closure of the difference H(PU Q) \ P as the
region “between” P and Q. Except for H(P U Q)’s facets contributed by P or Q, the remaining facets are
incident to vertices of both P and Q, and are thus called bridges. It is crucial to observe that the bridges lie on
planes tangent to both P and Q. (For more on convex hulls, see [5], [10].) The bridges abut on the boundary
of P along a connected polygonal line along edges of P, the horizon. In the simplest case, the horizon is a
simple closed path, but it may collapse into a chain of adjacent edges of P traversed in both directions, or a
single vertex of P; in general, it is a combination of the above cases (see [5]). The facets of the polyhedron
P that lie in the interior of the convex hull H(P U Q) are called internal; the remaining ones are said to be
ezternal. By extension, we call the edges of P that lie in the interior of H(PUQ) internal as well. Both facets
of P incident upon an internal edge are internal.

Next, we present two important lemmas. To formalize our description, we define the notions of the in- and °
out-wedge of an edge e of P: the planes that support the two facets of P incident upon e define four open
3d-wedges around e; since P is convex, its interior lies entirely in one of them, which we call the in-wedge of
e. The wedge opposite the in-wedge of e is the out-wedge of e. Then, we have:
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Lemma 2.1. The intersection of the plane Eg that supports the polygon Q and the out-wedge of a horizon
edge e of P that is not parallel to Eq is an open two-dimensional wedge that does not intersect Q.

Sketch of Proof:  Since e is a horizon
edge of P, it is an edge of the convex
hull H(P U Q). So, for any plane II
through e that is tangent to H(P U
Q), both P and Q lie entirely in (the FAREEY
closure of) one of the two halfspaces _I___x e 1—»: L
defined by II, whereas the out-wedge

of e lies in the other. (In Figure 1, the ik: A‘, N Ap
intersection of Eqg and the out-wedge * *

of e is shown shaded.) 1 Figure 1 Figure 2

b/

We can prove by contradiction that, for internal edges (Figure 2), we have:

Lemma 2.2. The intersection of the plane Eq that supports the polygon Q and the out-wedge of an internal
edge e of P that is not parallel to Eq is an open two-dimensional wedge that intersects Q.

Finally, we close this section with some definitions and observations pertaining to tetrahedralizations.
A tetrahedralization of a closed piecewise-linear subset S of R3 is a partition of S into tetrahedra, i.e., no
two tetrahedra in the partition intersect except at their boundaries, and the union of all the tetrahedra is
precisely S. If the intersection of any two tetrahedra is either empty or a face of both tetrahedra, then the
tetrahedralization is called a cell compler. In some cases, points of S other than its vertices are allowed to
become vertices of the pieces in a tetrahedralization of S; such points are called Steiner points. Disallowing
Steiner points in a tetrahedralization of the region “between” a convex polyhedron P and a convex polygon’
Q implies that the reported tetrahedra belong to one of the following three classes:

(i) v-f tetrahedra defined by a vertex of P and a triangle in Q,
(i) f-v tetrahedra defined by a triangle on the boundary of P and a vertex of @, and

(iii) e-e tetrahedra defined by an edge of P and an edge of Q.
It is easy to see that the first two classes account for a number of tetrahedra linear in the combined size of P
and Q; therefore, making sure that the number of tetrahedra in the third class is also linear in the combined
size of P and Q guarantees a linear total size of the tetrahedralization.

3. Rolling Lines.

Consider a convex polyhedron P and a convex polygon Q whose supporting plane does not intersect P;
let us orient each edge of P so that it points towards the plane Eq that supports Q (ties are broken in some
arbitrary but consistent way). Then, there exists a unique vertex of P such that all incident edges point at
it; this is the vertex of P closest to Eqg. Next, we define the notion of rolling lines, which is the key tool in
the definition of the tetrahedralization: for each edge e of Q, the corresponding rolling line is a line parallel
to e that is tangent to the boundary of P; it is initially located at the vertex w of P N closure(b.) closest
to e (where b, is the unique bridge incident to e), and is let free to roll on the boundary of P along internal
or horizon edges of P complying with their associated orientations (we stress that the line must always be
tangent to P). The line stops when it reaches the vertex of P that is closest to Q. It is important to observe
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that the line rolls along a simple path of edges of P, which we call the corresponding rolling path; the rolling
paths may share edges but they do not cross, and their traces around a slice of P (with a plane parallel to Q)
are in the same order as the corresponding edges around Q — think in terms of their slopes. In terms of the
rolling lines, we define the following tetrahedralization scheme (for proof of correctness, see [9]).

Lemma 3.1. The region “between” a convez polyhedron P and a convez polygon Q (whose supporting plane
does not intersect P) can be tetrahedralized by reporting:

1. e-e tetrahedra defined by each edge of Q and the edges in the rolling path of the corresponding rolling line;

2. f-v tetrahedra defined by each vertex q of Q and the (internal) facets of P, if any, located between the
rolling paths of the rolling lines that correspond to q’s incident edges of Q;

3. v-f tetrahedra defined by the vertez of P closest to Q and a triangulation of Q.

3.1. Merging Rolling Lines.  Unfortunately, the above tetrahedralization scheme does not guarantee a
number of tetrahedra linear in the total size n of P and Q; indeed, it is conceivable that ©(n) rolling lines roll
along a chain of ©(n) polyhedron edges, which will result in a ©(n?) size tetrahedralization. What helps us
achieve our goal is the key idea of “merging” rolling lines, so that no more than a constant number of them
roll along the same edge of the polyhedron P; it relies on the fact that for an edge e of P (oriented from vertex
u to v) that is not parallel to the polygon Q, a tetrahedron defined by v and a triangle in @ that does not
intersect the in-wedge of e lies in the closure of (convex_hull(PUQ) \ P).

We distinguish the following three cases that cover all possibilities:

1. The edge e is an internal edge of P: In this case, the rolling lines that await to roll along the edge
e correspond to a single chain C of consecutive edges of @, which is delimited by the vertices at which
planes parallel to e’s incident facets are tangent to Q. Figure 3 depicts the situation, where the shaded
portion of Q corresponds to the intersection of Eq with the in-wedge of e (compare with Figure 2). Then,
we “merge” the rolling lines associated with e by (i) finding diagonals in the non-shaded part of Q that
clip portions of Q and “shortcut” subchains of C, (ii) replacing the corresponding rolling lines by a single
rolling line that corresponds to the diagonals, and (iii) reporting tetrahedra defined by u and the clipped
portions of Q. It is not difficult to prove that the rolling lines associated with an internal edge e can be
“merged” into at most three rolling lines that will roll along e (see Figure 3).

2. The edge e is a horizon edge incident to only one internal facet f of P: In this case, the rolling lines
that await to roll along the edge e correspond to a single chain C of consecutive polygon edges, such that
the entire chain C and the polyhedron P lie on opposite sides of the plane supporting f (Figure 4). We
can then clip the polygon Q about the diagonal d that separates C from the rest of Q, and thus “merge”
all the rolling lines associated with e into a single rolling line that corresponds to d. Of course, we also
report tetrahedra defined by u and a triangulation of the clipped portion of Q.
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3. The edge e is a horizon edge and both incident facets are internal facets of P:  This case is nothing
but two copies of Case 2 glued together at e; then, the associated rolling lines correspond to two chains
C1 and C; of consecutive polygon edges (Figure 5). In a fashion similar to Case 2, the rolling lines can
be “merged” into two rolling lines that correspond to the diagonals that clip each of the chains C; and
C, from the rest of the polygon. Again, the merging involves reporting tetrahedra defined by u and
triangulations of the clipped parts of the polygon Q.

The contribution of the merging process is summarized in the following lemma:

Lemma 3.2. Thanks to the merging process, the number of rolling lines that end up rolling along an edge e of
the polyhedron P is at most three. The process involves clipping portions of the polygon Q about diagonals
of Q (thus, the resulting polygon remains convez), and reporting v-f tetrahedra whose number is linear in
the size of the clipped portions.

4. The Algorithm.

The algorithm is based on the sweep-line paradigm: a vertex is processed only when all the rolling lines
that roll through it have reached it, and no rolling line rolls past a vertex that has not been processed yet.
This necessitates an ordering of the polyhedron vertices; fortunately, the topological ordering of the vertices
in the directed acyclic graph G induced by the polyhedron’s intérnal and horizon edges oriented towards the
polygon is sufficient: to compute the ordering, we maintain a list L of vertices whose predecessors in G have all
been processed (the number of unprocessed predecessors is stored in a field in-degree in each vertex’s record).

The algorithm consists of the following steps:

Step 1: We input the description of the polygon @ and store it as a doubly connected linked list of edges,
so that edges can be inserted or deleted in constant time. We then input the description of the polyhedron P,
and we store it using one of the standard representations (see [1], [7], [8]), so that all the faces incident upon
a given face can be located in time linear in their number. Additionally, we orient each edge of P so that it
points towards the polygon (ties are broken in some arbitrary but consistent way).

Step 2: We compute the bridges of the convex hull of P U Q (we use the linear-time merging procedure of
the divide-and-conquer algorithm to compute the convex hull of a point set in R3 [5]). The edges of P incident
upon the bridges form the horizon. Moreover, the internal facets of P can be found easily: we first determine
the internal facets adjacent to the horizon edges (by using information from the bridges), and then we find
the remaining ones by moving from an internal facet to its neighbors, without ever crossing the horizon. Last,
we determine the starting points for all the rolling lines as described in Section 3.

Step 3: For each vertex v of P incident upon an internal facet, we store at its field in-degree the number
of incident internal or horizon edges of P oriented towards v; if this number is 0, v is inserted in the list L.
(Note that L will contain at least one vertex, the vertex on the horizon that is farthest away from Q.)

Step 4: We remove a vertex, say u, from the list L. If u is the vertex of P that is closest to the polygon
Q, then the rolling procedure is complete, and we continue at Step 7. Otherwise, we proceed to Step 5.

Step 5: We process the edges of P emanating from u in order around u. For each such internal or horizon
edge e, we select among the rolling lines located at u those, if any, that are tangent to e and would thus roll
along e (it is important to note that the edges in order around u get matched with rolling lines in the order that
the corresponding edges appear around the polygon). The collected rolling lines are merged as described in
Section 3 by finding the appropriate diagonals; in the process, the polygon may be clipped and v-f tetrahedra
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may be reported. Next, the resulting rolling lines roll along e, that is, we report an e-e tetrahedron defined by
e and the polygon edge corresponding to each of these roling lines, and the rolling lines are moved from u to
the other polyhedron vertex incident upon e. Finally, the internal facets incident upon e are associated with
the polygon vertex with which they are going to define f-v tetrahedra as follows: If lines rolled along e, then
the facet that is to the left (right, resp.) of e is associated with the leftmost (rightmost, resp.) vertex incident
to the leftmost (rightmost, resp.) polygon edge corresponding to a line that rolled along e (for example, in
Figures 3 and 5, f; and f; are associated with ¢; and g, respectively, while in Figure 4, f is associated with
q). If no lines roll along e, then if e is on the horizon, the vertex associated with its incident internal facets is
determined by the bridges; otherwise, the facet to the right of e gets associated with the same polygon vertex
as the facet to the left (note that both facets are internal and that the facet to the left has been updated at
a previous step, if the edges out of u are processed from left to right). Finally, if e points from u to w, we
decrease the in-degree of w by 1; if it becomes equal to 0, we insert w to L.

Step 6: When all the edges emanating from vertex u have been processed, we return to Step 4.

Step 7:  Upon reaching this point, the rolling lines have fulfilled their mission, and they are discarded. To
complete the tetrahedralization, we (i) triangulate what is left of the original polygon Q (due to clipping
during the rolling line merging process) and report v-f tetrahedra defined by the vertex of P closest to the
polygon Q and the resulting triangles, and (ii) triangulate each facet f of P and report f-v tetrahedra defined
by the resulting triangles and the polygon vertex associated with f.

The correctness of the algorithm follows from the discussion in Section 3. Moreover, it can be proved that
the total time spent by the algorithm is proportional to the size of Q and the total number of faces of P; hence,
it is linear in the combined sizes of P and Q (see [9]). Finally, let us count the total number of tetrahedra
produced: if the number of vertices of P and Q are np and nq respectively, and the number of edges of P is
ep, Lemma 3.1 implies that the total number of tetrahedra does not exceed 3e, + (2np —4) + (ng —2); the
three terms correspond to the number of e-e tetrahedra, f-v tetrahedra, and v-f tetrahedra respectively. Euler’s
formula for convex polyhedra in R? implies that the total number of edges of P is no more than 3np — 6,
which brings the total number of tetrahedra to no more than 1lnp+ng—24 < 1ln —24.

5. Conclusions and Open Problems.
Our results are summarized in the following theorem:

Theorem 5.1: For a convez polyhedron P and a convez polygon Q (whose supporting plane does not intersect
P) in R® of total combined size n, we show that one can partition the closure of convez_hull(PUQ)\ P into
at most 11n — 24 tetrahedra without introducing Steiner points. The tetrahedralization is compatible with
any triangulation of the boundary of P, and can be computed in O(n) time.

Unless the polygon has no collinear consecutive edges, the resulting tetrahedralization is guaranteed to be a
cell complex. If collinear consecutive edges exist, our approach automatically merges the corresponding rolling
lines (and the edges) into a single rolling line (edge resp.), and thus the tetrahedralization is not a cell complex;
a cell complex can, however, be obtained by using an idea similar to that of Eppstein (in order to “protect”
edges of polyhedra during tetrahedralizations (see [3])) at the expense of introducing Steiner points.
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Our result also implies an optimal size tetrahedralization for the side-by-side case (see [2]) if a linear
number of Steiner points are allowed; namely, the closure of (convex_hull(P, U P;) \ (P, U P,)) between
two non-intersecting convex polyhedra P, and P; of total size n can be partitioned into O(n) tetrahedra
using O(n) Steiner points. The tetrahedralization is compatible with the boundaries of both P, and P;, and
can be computed in O(n) time. It would be of interest to investigate the question whether an O(n) size
tetrahedralization is possible with o(n) Steiner points in the worst case.

Moreover, it would be interesting to find out whether the idea of rolling lines can be used to yield a linear
size tetrahedralization without Steiner points in the nested case, i.e., when tetrahedralizing the region between
the boundaries of two nested convex polyhedra.

Finally, let us consider two convex polygons II; and II, that lie on parallel planes in R3. Clearly, Bern’s
quadratic lower bound for the side-by-side case implies that a tetrahedralization of their convex hull that
is compatible with arbitrary triangulations of II; and II; and does not involve Steiner points may be of
quadratic size in the worst case. The method, however, does not work if the two polygons are copies of the
same polygon: Is the size of a compatible tetrahedralization of their convex hull in this case quadratic in the
size of the polygons in the worst case?
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