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1. Introduction

Voronoi diagram is a well known tool in Computational Geometry and it has extensive applications
in several areas. Classical Voronoi diagram was defined for finite point sets in two dimensions
Extensions of this diagram to higher dimensions and non-point sets exist, but all such extensions
deal with either point sets in higher dimensions or relatively simple objects; and it appears that
the size of such a generalized Voronoi diagram for non-point convex polyhedra in d-dimensions is
yet to be conclusively established [1].

A generalized Voronoi diagram was proposed in [2,3] in the context of motion planning in three
dimensions for a convex polyhedron M with non-empty interior moving among convex, pairwise
interior disjoint polyhedral obstacles O;s with non-empty interiors. It was shown in (3] that the size
of a generalized Voronoi diagram for non-point convex polyhedra in three dimensions is given by
O(n*Q*!?), where n is the total number of two facets on the obstacles, Q is the number of obstacles
and ¢ 55 the nunber of iwo facets on the moving poiyhedron.

This paper extends the result of (3] to d-dimensions. We show that in d-dimensions, the size of
the generalized Voronoi diagram is given by O(f((l)ded“‘vf{, where f(d) is a singly exponential
function of d. v is the total number of vertices on the obstacles,  is the total number of obstacles
and vas is the total number of vertices on the moving object. Our proof uses a recursion technique.

2. Preliminaries
In this section, we briefly describe some important definitions. More details can be found in [4].

Definition 2.1 A set S is said to be polyhedral if S can be written as a finite union of convex
polyhedra, i.c., § = 2, I%, where cach P is a convex polyhedron and = is finite.

Definition 2.2 Suppose Xi, i = 1.....n are polyhedral sets. Let E; be the set of all open
I-faces of X; and V; be the set of all 0-faces of X;. Then we call the set S = U{E:UVi} the
wireframe of {X;}.

The following definition is taken from a paper by Leven and Sharir (5]

Definition 2.3 Let z € RY. The M-distance of a set A from z is defined as the minimum

expansion required of M when v, is placed at z such that A/ “just touches” A. Formally,
d(z; A) = inf{A: (z + AM) [ A # 6,2 > 0}

If z € A then d(z; A) = 0. For convenience. we write d(z;0;) as di(z).
Definition 2.4 Let O; be an obstacle. Then the cell associated with O;, C; is the set

{z € R*:di(z) < dj(z) Vi#i,j€1,...,Q}

Physically, this is the set of all points in R? from where M is closer to O; than any other obstacle.
It is not difficult to see that each cell is polyhedral. ‘

Definition 2.5 Let z € R%\|JO; and consider (z +di(z)A). Clearly (z +d;(z)M) touches O;.
Then, by convexity of O; and A, a unique open facet o; of O; is being touched by a unique open
facet oy, of M. We call the ordered pair (0;,0m) as the touch description associated with the touch.

Definition 2.8 For the touch description associated with a touch ¢ we define loss of degrees
of freedom Idof(t) as (d + 1)~ the number of free variables in the set of linear equations which
describe the touch.
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Consider an z € R®. Suppose z is such that exactly k obstacles Oy, ..., Ok are equidistant from
z and no other obstacle is as close as any of these k obstacles. Then when A[ is placed with v,.s
on z and expanded by di(z), there are exactly k touches, say ¢1,...,¢. Each one of these touches
t; has one touch description (0;,0n,;) associated with it.

Definition 2.7 We call the list (01, 0m,,...,0k,0m,) as the type of touch T at z.

Definition 2.8 Consider a type of touch T'. By definition T is a 2k-tuple (01,0m,, ..., 0k, Om, ).
The loss of degrees of freedom associated with the type of touch T, ldof(T) is defined as the sum of
the loss of degrees of freedom for each touch description (o;,0n,,) associated with the touch t;, i.e.
ldof(T) = Y ldof(t;).

As in [3], we make certain generic assumptions [6] on the relative orientations of the obstacles.
We give here only one of those which we will require later.

Assumption Let £ > 1 and consider any & distinct touches, each touch being described by
a touch description ¢;,z = 1,...,k. Then the set of all points where exactly these k touches (and
no other) are maintained is either empty or a (d + 1) — (X ldof(¢;)) dimensional manifold. A set
having negative dimension is taken as the null set.

We use the name skeleton for the Voronoi diagram which is formally defined as:

Definition 2.9 The skeleton of R*\|J O; is the wireframe of {C,}::,Q where Cj is as in definition
2.4 and wireframe is as in definition 2.2.

3. Size of Voronoi diagram

In this section, we prove the main results. Because of lack of space, detailed proofs are omitted
from this paper. Instead. we try to give the motivation by means of an example: we believe this
will help understanding the underlying idea behind the proof. The main results are then stated in
forms of theorems. Full details can be found in [4].

We will use the following notations. n¥ will denote the number of & dimensional facets of
obstacle O;. n; will denote the maximum of nf" over all k, i.e., n; = maxg nf’. n will denote the
sum of n; over all i, i.c., n = 3; n;. Similarly, [* will denote the number of & dimensional facets of
the moving object A and [ will denote maxy (*.

Proposition 3.1 Consider only two obstacles O; and Q. Then the total number of k dimen-
sional facets in the final set formed by the cell boundaries of C, and C, is O(?n;n;1?).

Proposition 3.1 gives a bound on the number of & dimensional facets when only two obstacles
are present. [lowever, in a general scenario. the number of obstacles is more than 2. Therefore we
must derive a bound for the same when @ obstacles are present. :

Our counting process uses an incremental technique. We start with only two obstacles and
then use proposition 3.1 to derive the bounds on the size of the & dimensional facet sets. Next, we
introduce only a third obstacle and find a bound on the eztra k& dimensional facets added because
of this new obstacle. This process is repeated; i.c., obstacles are added one by one and we find a
bound on the number of eztra k dimensional facets added each time.

The above process is finite by virtue of independence. By independence, we know that not more
than d obstacles can contribute a point to an edge. Thus it is sufficient if in the counting process
we consider presence of only d obstacles to derive a bound on the size of & dimensional facet sets
Yk > 1. Other obstacles can affect these sets, but in a different manner. They can further subdivide
these sets, and that can be taken care of separately. Also, since each vertex belongs to the closure
of an edge and each edge contains at most two vertices, the size of the 0-dimensional facet set is
the same as 1-dimensional facet set.

First we consider the presence of only two obstacles. and use proposition 3. 1 to derive the bounds
on the size of & dimensional facet sets. Next we introduce a third obstacle. This third obstacle
creates new & dimensional facets by pairing with the two obstacles already present, and also by
intersection between existing (k + 1) dimensional facets and newly generated (k + 1) dimensional
facets. Thus the additional & dimensioanl facets generated are counted and listed down. Next we
introduce the fourth obstacle, and consider the generation of k¥ dimensional facets as before. This
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process goes on till we complete the addition of the d-th obstacle. Then we sum up the terms
corresponding to each k dimensional facet which gives us a bound.

Since we are interested in a bound and not an exact count, we use certain bounding approxi-
mations to make the calculation simpler. Suppose E¥ is a bound that we develop on the number of
extra k dimensional facets added when the r-th obstacle is introduced. In the process of counting,
we find that EX¥ > EF Vs < r and E*¥ < E? Vk > 5. That is, E} is the biggest term of all E¥, and
thus it is sufficient if we can compute E}; then, E¥ < E}Vk,1 < k < d -1 and r < d. This is the
idea used for the counting. We illustrate the idea informally using a five dimensional example.

Consider a five dimensional space. Suppose only five obstacles are present. Then the facet
dimensions we need to consider are 0 < k < 4. As already mentioned, 0-dimensional facet set size
is the same as 1-dimensional facet set size: so it is sufficient to consider only 1 <k < 4.

First consider only two obstacles, O1 and Oz. Then by proposition 3.1, the size of each dimen-
sional facet set is O(nyn2d3!?). For the sake of convenience, we drop the order notation, and the
terms d> and /2 in the following analysis.

Now consider the introduction of a third obstacle O3. Then clearly, extra & dimensional facets
will be introduced. Also, a new k dimensional facet can now be introduced in one of the two
following ways: i) by direct generation because of combinations of facets between (O; and O3)
and (O3 and O3) and ii) by intersection nf one existing (k + 1) dimensional facet and one newly
generaled (£ + 1) dimensionai facet.

Consider & = 4. They are generated only directly and the extra number is nyn3 + nyns (note
that this is just a bound. It contains the terms ¢ and [* too). For convenience in counting,
we replace this by the bound E} + (nyn3 + nanj), which we call £5. Consider & = 3. There
directly generated 3-dimensional facets add (nyn3 + nang) facets which we again replace by the
bound E} + (nyn3 + nan3). Now consider intersection of +-dimensional facets. It is casy to see
that argument similar to that used for polygon intersection in 3-dimensional case [3] holds and the
number of -f-dimensional facet intersections is (£ + nyng) + ( £3 + ngny). We call this total number
of extra 3-dimensional facets added as E3.

Now-the following observations can be made.

1. E} > E} Vm < r. This is clearly true, as whenever a new obstacle O, is added; the term
E! becomes E!_, + (ny + --++ n.-1)n, > E}_, and then by simple recursion the result follows.

2. E§ > EX* Vk < m. This also is easy to see, as clearly £ < £3 and £3 and E} are the same
as E3.

Now consider the introduction of the fourth obstacle, O,.

Then Ej = E3 + (n1 + ng + n3)ny.

The 3-dimensional facets are introduced as before by one of the following ways: i) direct genera-
tion and ii) intersection of one old and one newly generated 4-dimensional facet. Direct generation
number is £5. But while considering the intersection of 4-dimensional facets we cannot use the
arguments similar to that used for three obstacles case. as now the polytopes may be non-convex.
However, observe the following. Suppose a non-convex polytope P; of dimension d is being inter-
sected by another polytope P, of dimension d. Then P, cannot generate more than one (d-1)
dimensional facet in P, as it is truncated by the polytopes sharing the boundary of P,. Let us
take an example to illustrate the idea. Suppose a two dimensional non-convex polytope P, is being
intersected by a two dimensional polytope P,. Suppose the intersection can create three distinct
edges e;,ez,e3. Suppose both e; and e; are newly contributed edges. But the section é between e,
and ez is not a new edge and that violates the convexity of the obstacles, which is a contradiction.
Thus only one of e;,e;,e3 can exist as a newly created edge. Therefore we need to repeat our
arguments over only one possible intersection. Then a similar argument to that used for the three
dimensional case holds, and the number of three dimensional facets generated by four dimensional
facet intersection is (E3 + nyny) + (E3 + nany) + (E3 + nany).

We calculate E? as follows. They are generated by i)direct generation ii)intersection of two
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three dimensional facets, one existing and one newly generated and iii)intersection of three four
dimensional facets, at least one of which is newly generated and at least one is existing. i) is
easily calculated as (E3 + (n1 + n2 + n3)ng). ii) is calculated as before: (number of existing three
dimensional facets +n;n4) + (number of existing three dimensional facets + nyn4) + (number of
existing three dimensional facets + nzny4). Number of existing three dimensional facets can be
enumerated as E + E3. Since E3 > E3, number of existing three dimensional facets is bounded
by 2E3 and thus ii) is counted as (2E3 + nynq) + (2E3 + nany) + (2E3 + nany).

Case iii) is enumerated as follows. First we consider intersection of four dimensional facets,
one pair at a time. There will be exactly two such pairs, each generating one three dimensional
facet, which in turn will intersect to generate a two dimensional facet. But the number of three
dimensional facets generated by four dimensional facet intersection is already calculated to be
3E3+ (n14n2+ n3)ny. These three dimensional facets in turn can generate at most the same order
of two dimensional facets by intersection among themselves (by the argument given for case ii) of
three dimensional facet generation) and thus case iii) is enumerated as 3E; + (n; + ny + n3)n,.

Now we make the following observations.

1. E¥ > E™ Vk < m. This is easy to see. Clearly E3 > E4 as E4 = EX_| + (ny + -+ + no_y)n,
and £ = E} + (r = 1)E}_; + (ny + -+ + n,_1)n,. Now, E? is calculated as the sum of directly
generated two dimensional facets and intersection of existing three and four dimensional facets.
with aewly gencraied three and four dimensional {acets. Therefore, £; > £2. L} is calculated
as directly generated + intersection of two and three dimensional facets, and so E! > E2. This
process can be made recursive which gives the result.

2. Ef > EX ¥r > m. E!is monotone increasing. Therefore E3 is, and thercfore E* and in
turn E!.

By these two observations, we have that E} > EfYr =2,....d,k=1,....d = . Therefore it
is sufficient if we calculate the term £]. Also note that to calculate £} it suffices 1o find only the
reverse diagonal lower triangular matrix of the structure.

Number of Obstacles Facet dimension
| 2 3 4
. Ey
Ea,’ Ll

3

2 3 ol

E,‘ E,‘ E“

Ey E? E} EY

[ RO

This is true because E} is affected only by the number of existing 2, 3 and 4 dimensional facets.
But £§ > E} > Ef and thus it is sufficient to have E?. Similarly for £3 and E{. Again. E? is
affected only by existing three and four dimensional facets and E3 > E3; so it is sufficient to have
only E3. A simple recursive argument then validates our claim.

Now let us calculate Ej. These one dimensional facets are generated in one of the following
ways: i)direct generation ii)intersection of two two dimensional facets, one existing, one newly
generated iii)intersection of three three dimensional facets,at least one existing and at least one
newly generated and iv)intersection of four four dimensional facets, at least one existing and at
least one newly generated. Case i) is enumerated as Ej,‘ +(n1 4+ ---+ n4)ns. Case i) is enumerated
as (3E2 + nins) + (3E} + nons) + (3E2 + nans) + (3E2 + nyns). Case iii) is enumerated as
(3E3 + nins) + - -+ + (3E3 + nyns) (This is seen as before: the above expression determines the
number of two dimensional facets generated by intersection of three dimensional facets, and each
such two dimensional facet can create the same order of one dimensional facet among themselves).
Case iv) is done similarly to give 4E7 + (ny + - -+ + ny)ns.

E! is a bound for the edge set created by 2-tuples, 3-tuples ,..., 5-tuples. Thus edge set size is
O(Q)(Ed|2=tupies + -+ + E}|s_tupies). The term O(Q) comes as every edge can be broken into two
by every other obstacle. As seen before, vertex set size = edge set size.
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By independence, at most d obstacles can contribute a point to an edge. Thus at most d two
dimensional facets can share an edge. So size of two dimensional facet set is O(d)e where e is the
size of the edge set. Similarly, size of three dimensional facet set is O(d — 1)O(d)e, or in general,
the size of any k dimensional facet set is bounded by O((d!)e).

Theorem 3.2 Suppose there exist Q obstacles Oy,...,0q,Q > d. Then the total number of &
dimensional facets in the final set formed by the boundaries of cells Cy,...,Cq is O((d!)Q¢) where
e is the size of the edge set when only d obstacles are present.

Proof Since every edge can be broken into two by each of the other obstacles, the edge set size
for Q obstacles is O(Qe). Then by the discussion preceeding Theorem 3.2, the result follows. =

Theorem 3.2 gives a bound on the number of & dimensional facets in terms of e, the number of
edges when only d obstacles are present. Next, we derive a bound on e using the ideas illustrated
by the example.

Theorem 3.3 Suppose only d obstacles Oy,...,04 are present. Then the total number
of one dimensional facets in the final set formed by the boundaries of the cells Cy,....Cy is
0(24(d)2d®n?Q*-%1?).

Proof We will give a short outline of the proof; the principle being the same as illustrated
before in the five dimensional example.

In the following discussion, for the sake of convenience we write n;n; in place of O(d3n,~njl2).
Whetiever we do speciiic operations on order notations, we meiiion that.

First consider the presence of only two obstacles Oy and O,. Then by proposition 3.1. the size
of each of the & dimensional facet set is defined by these two obstacles and is nyns.

Next we consider the introduction of a third obstacle say O3. We count the number of extra d—1
dimensional facets added and extra d — 2 dimensional facets added. We will use the notation EX to
denote the number of extra & dimensional facets added when the r-th obstacle is introducd. Then
as in the previous discussion, 15;’,{-' = 2.‘<,.1 <ij<a i and qu = (nyny+nyny)+(nyny = nany).

In general, we find that £%-' = Cicii<iy<r iy and B2 = BV (r= DB (= 4
Neey )iy, 7 2 3.

We must find a similar recursive relation for any dimensional facet. Now observe the foilowing.
For any k£ € {1.2..... d = 3}; we need to sum up the extra k + 1.k + 2.... dimensional facots
generated in every step to find the number of intersections they produce: and thus:

EM = EF' + (r=DEZ +(ni+ -+ neoi)n,

+ (r=1)r- 2)Ef:f +(ny 4+ 00,

+. v .

+ (r=Dr=2EM + (i + -+ 020,
where r + m > d + 1. This final constraint is necessary, as when the r-th obstacle is added. the
effect of d — 1 dimensional facets can come down only upto the [(d — 1) - (r — 2)] dimensional facets.
Since we are counting the reverse diagonal lower triangular part of the matrix. we always satisfy
the relation.

Observe that the expression of ET* has the term (r — 1)(r — 2) associated with each EX_ ,k €
{d-2,...,m+1} except for Ef_'ll which has only (r — 1) associated with it. To make the recursion
simpler, and since we are using order notations, we can replace (r — I)E",i:ll by (r-1)(r - ‘.’)Ef_‘ll
and thus we will work with E¢=2 replaced by the expression: E4~% = E¥F' 4 (r- 1)(r - Q)Ef'_'ll +
(n1 4 --+ + n,_1)n, and similarly modifying the expression for E™.

We claim that: E* = EM* 4 (r = 1)(r = 2)E™Y + (ny + -+ + 7,21 )1y

The result can be proved easily by induction.

Then the number of one dimensional facets is 22— tuples El + Ca—tuples B3+ + S dtusies By
The final form uses d-tuples as there are only d obstacles present by assumption. Also. E} >
E}Vr € {2,3,...,d} and thus it is sufficient to find E} as in order notation it bounds every E!.

By the above claim, we can express Ej as Ej = EJ 4+ (d—1)(d = 2)E3_, 4+ (ny + - -- + nj_y )ng.
This expression for E] can be further expanded using the claim (by expanding the terms E; and



362
E?_,), and finally we get an expression for E} involving Ek‘l Vk = 2,...,d. This final expression

can be written as:
E} = 0(2%(d!)*[nyng + (n1 + n2)ng + -+ + (nq + - -+ + ng—1)n4))

The above sum is valid as we are using order notations. Using proposition 3.1, we find that the
term within the square parentheses equals O(PI* T, _; | o, icqnin;), and therefore E} is given by

Ej=0(2%d)*d®® Y winy).

i<j,1<i.j<d

Then summing over all possible combinations, we find
22—tup1es Ecll + Z.?.—tuples E& +ee+ Zd—tuples Ecll = 0(2d(d!)2d3n2Qd-2l2)
which proves the theorem. .
Theorem 3.4 Suppose there exist @ obstacles Oy,...,0q. Then the total number of k dimen-
sional facets in the final set formed by the boundaries of cells Cy,...,Cq is O(2%(d!)3n2Q3-112).
Proof Iinmediate from theorem 3.2 and theorem 3.3. .
Remark In theorem 3.4, we have chosen n = ¥, n;, n; = max; nf where nf-" is the number of

k dimensional facets of obstacle O;. Now suppose the number of vertices of O; is v;. Then n; is of
14 ) i, id Iy P

~size O(v,*"). Therefore, n = G((T; vi)lid) {as T, u}’J <X vi)tzd L Let v = Y, v;. then the size

of each of the & dimensional facet sets is O(2%(d!)3v4Q4=112).

l%J)

[ can also be expressed similarly. Suppose the number of vertices on M is vy;. Then ! = Of Uy
and so the size of cach & dimensional facet set is O(‘.!"((l!)"ded“‘v:{, ).

4. Conclusion
In this paper, we have established a bound on the size of a generalized Voronoi diagram for non-
point convex polyhedra in d-dimensions. Our proof uses a recursive technique which can find
applications to other geometric problemns as well.

The bound obtained in this paper is clearly not optimal: this can be casily seen by substituing
d =3 in theorem 3.1 and comparing the result with the three dimensional bound in [3]. It will be
an interesting exercise to obtain a better bound. probably an optimal one: though there are reasons
to believe that this question is hard.
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