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Abstract

Two points are said to be orthogonally visible if
there is a path between them monotone with re-
spect both axes. A polygon P is called orthogo-
nally convex (orthogonally link-2 convex) if every
pair of points in P is orthogonally visible (are or-
thogonally visible from some third point). A poly-
gon P is orthogonally starshaped if there exists
a point from which every point in P is orthogo-
nally visible. Motwani, Raghunathan, and Saran
provide a polynomial algorithm for the orthogonal
star cover problem based on showing that a cer-
tain characteristic graph of a polygon is perfect,
and that for orthogonal visibility, link-2 convexity
implies starshapedness.

In this paper we consider to what extent these
techniques can be extended to more general kinds
of convexity. In particular we exhibit a non-trivial
class of polygons that are starshaped if they are
link-2 convex.

1 Introduction

1.1 Definitions

This section contains some required definitions, a
review of the some of the relevant previous work
on visibility and an outline of this paper. We start
with some geometric definitions.

The neighbourhood of any point on the interior
of a curve has two well defined sides. A proper
crossing of two curves S; and S denotes a (possi-
bly zero length) curve S3 C int(S;) Nint(S;) such
that as we traverse S; from one endpoint to an-
other, Sz is one side of S; in the neighbourhood
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Figure 1 A half polygon.
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of the first endpoint of S3 encountered, and on the
other side of S; in the neighbourhood the second
endpoint of S3 encountered.

A closed polygonal curve S is called weakly sim-
ple if any pair of distinct pointsin S divides S into
two polygonal curves that have no proper crossings
and the total angle traversed when S is traversed
from any point on S is equal to 360 degrees. Like
simple polygons, weakly simple closed polygonal
curves have a well defined interior and exterior. A
weakly simple polygon is defined to be a weakly sim-
ple closed polygonal curve, along with the interior
of the curve.

In this paper we are interested in those weakly
simple subpolygons defined by a chord of a simple
polygon. These half polygons consist of a single
base edge lp 'I-o—r;,_a set of (possibly zero length) seg-
ments (loro,llrl,...h,rk) collinear with [or. and
a set of non-intersecting simple polygonal chains
(Br ... B ) where f; joins I; to r;_; (see Figure 1).
If a half polygon Q contains only one polygonal
chain g;, then Q is called a hat polygon (see Fig-
ure 2). The zero width regions of a hat polygon Q
between lore and the base edge and between Tiry
and the base edge are called the brim segments of
Q.

The orientation of a line denotes the smallest
angle that the line makes with the positive z-
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Figure 2 Some example hat polygons.
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axis. Since lines are undirected, we assume that
all line orientations are in the range [0°,180°). All
other objects will have orientations in the range
[0°,360°). Given a set of orientations O, we de-
fine the span of O to be the smallest angle o such
that there exists a wedge of angle o containing ev-
ery orientation in O.

1.2 Visibility

Visibility is a central notion in computational ge-
ometry. Informally, visibility problems are con-
cerned with whether or not pairs of geometric ob-
jects within a set of obstacles can “see” one and
other. Recent research has considered general-
ized visibility or “reachability” problems, where
the notion of straight line visibility is generalized
to reachability by some sort of constrained path.
In this section we review the traditional notion of
visibility and some of the generalizations of visibil-
ity that researchers have investigated. In particu-
lar we describe the notion of restricted orientation
visibility that this paper investigates.

Two points z and y in a polygon P are said to
be visible if the line segment between them does
not intersect the exterior of P. A set of points P
is said to be convez (link-2 convez) if every pair
of points in P is visible (sees some third point in
P). A set of points P is said to be starshaped if P
contains some point from which all of P is visible.

Orthogonal polygons are commonly studied in
computational geometry both because many geo-
metric problems admit simple case analysis based
algorithms on orthogonal polygons, and because
they arise in many important applications (e.g., in
VLSI and image processing). Keil [5], Culberson
and Reckhow [4], and Motwani, Raghunathan, and

Saran [6, 7] investigated the notion of orthogonal
visibility in orthogonal polygons. In many applica-
tions not only the boundary but also internal paths
(e.g. wires in a chip) are constrained to be chains
of orthogonal line segments; in this case it becomes
natural to say that two points z and y are orthog-
onally visible if there is a path between them that
is monotone with respect to both axes, since no
shorter path is realizable under the constrained ge-
ometry. A polygon P is called orthogonally convex
if every pair of points in P is orthogonally visible;
this is equivalent to requiring that the intersection
of P with any horizontal or vertical line be empty
or connected. A polygon P is called an orthogonal
star if there exists some set of points K in P such
that every point in P is orthogonally visible from
each point in K. Rawlins and Wood [8, 9] gen-
eralized orthogonal convexity to the notion of re-
stricted orientation converily, or O-convezity. Let
O denote a fixed, but unspecified set of line ori-
entations. A line is called an O-line if it has an
orientation in O. A set P of points is called O-
convez if the intersection of P with any O-line is
either empty or connected. A set P of points is
called O-concave if it is not O-convex. A finite O-
convex path is called a staircase. Restricted orien-
tation convexity is a generalization of both orthog-
onal convexity (O = {0°90°}) and the standard
notion of convexity (O = [0°,180°) ).

Observation 1 For any orientation 9, there ez-
ists an affine transformation that maps horizontal
lines to horizontal lines and lines with orientation
0 to vertical lines.

By this observation we may assume without loss
of generality that any set O of orientations contains
a pair of orthogonal orientations.

Given two points z and y in a polygon, we say
that z is O-visible to y (z sees y) and write z~y
if there is a staircase between z and y that does
not intersect the exterior of the polygon. The fol-
lowing lemma establishes the standard relationship
between visibility and convexity:

Lemma 1 (Rawlins and Wood [9]) If a point
set P is connected, then P is O-convez if and only
if for any pair of points p and q in P, p sees q.

In this paper we are concerned with O-visibility
inside polygons.

A point z is called link-k O-visible (or just link-k
visible) from a point y if there is some path between



z and y (not intersecting the exterior of the poly-
gon) consisting of at most k staircases joined at
their endpoints. A set of points P is called link-%
Q-convex (or just link-k convex) if every pair of
points in P is link-k O-visible.

A set of points K contained in a polygon P is
called the O-kernel of P if every point in P is O-
visible from each point in K. A polygon is called
O-starshaped if it contains a non-empty O-kernel.

Because we are considering a whole spectrum
of different kinds of visibility, it does not suffice
to consider classes of polygons, since the visibility
properties of a polygon change with type of visi-
bility under consideration. We therefore introduce
the notion of a visibility instance, defined to be a
pair (P, Q) where P is a polygon and O is a set of
orientations.

Motwani et al. [7] have shown that for {0°,90°}-
visibility, link-2 convexity implies starshapedness.
They use this, along with some other structural
results, to derive a polynomial time algorithm for
covering polygons with the minimal number of or-
thogonally starshaped polygons. In this paper we
consider to what extent this result extends to more
general sets of orientations O (i.e. to more general
kinds of convexity).

Bose and Toussaint [1] call a polygon P one-
fillable if there exists a direction d such that P has
only one local maxima with respect to d. We will
show that one-fillable polygons are starshaped if
they are link-2 convex.

The rest of this paper is organized as follows.
In Section 2 we present some definitions and ba-
sic results on restricted orientation visibility. In
Section 3 we give a characterization of when link-2
-convexity implies starshapedness. As a corollary
of a theorem about O-convexity for all O, we es-
tablish that one-fillable polygons are starshaped if
and only if they are link-2 convex. In Section 4 we
present some conclusions and directions for future
work.

In this extended abstract we omit many proofs;
the reader is referred to [2, 3] for details.

2 Dents

In this section we give some definitions and sim-
ple lemmas related to restricted orientation visibil-
ity. In particular we introduce the notion of a dent
which will play a role similar to that of a reflex
vertex in the standard notion of visibility.
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Figure 3 The partition of a polygon induced by a
pair of oriented chords
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Figure 4 A dent, and the three subpolygons in-
duced by it.

An oriented chord is defined to be a pair § =
(7,0) where « is a chord of P, and @ is one of the
two orientations perpendicular to y. We call an
oriented chord é = (vy,8) an O-chord if the orien-
tation of v (which is distinct from 6, orientation of
6) belongs to O.

Let R be a weakly simple polygonal region of P,
and let § = (,0) be an oriented chord such that
a segment of v is an edge of R. We say that §
faces into (respectively faces out of ) R if some ray
from v with orientation 0 (respectively 8 + 180°)
is in R in the neighbourhood of 4. Each oriented
chord divides the polygon into two weakly simple
subpolygons; A(6) denotes the one that § faces into
and B(6) denotes the one that § faces out of (see
Figure 3). By convention § is included in A(6) but .
not in B(6). If z € A(6) then we say that z is
O-above §; conversely, if z € B(6), we say that z is
O-below §. Where there is no ambiguity, we take
“above” to mean O-above and “below” to mean
O-below.

Culberson and Reckhow [4] introduced the term
dent to denote an edge of an orthogonal polygon
with two reflex endpoints. Let 7 be a reflex vertex
or edge such that
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1. There exists an O-chord § = (v, 6) such that
v is tangent to 7, and

2. Any ray from 7 in the direction 4 is inside P
in the neighbourhood of 7.

In this situation we call the ordered pair D = (7, )
a dent, and call § the dent chord of D, written D.
A given reflex vertex may be part of more than
one dent, but a given reflex edge may be part of at
most one. Given a dent D = (7,0), 7(D) denotes
T and (D) denotes §. We use the orientation of
D to mean the orientation of D, A(D) to denote
A(D), and B(D) to denote B(D). Given a set of
dents D, D € D is called a mazimal element of D
if
(3D’ € D) B(D) c B(D').

We may further subdivide B(D). The dent chord
D can be thought of as two disjoint collinear line
segments from 7(D) to the polygon boundary. We
define By(D) (respectively B.(D)) to be the weakly
simple subpolygon induced by D containing the
polygon edge clockwise (respectively counterclock-
wise) from 7(D) (see Figure 4).

A separating dent for two points z and y is a
dent D such that z € By(D) and y € B,(D) or
vice versa.

Lemma 2 Two points z and y in a polygon P are
O-visible if and only if there is no separating dent
for z and y.

3 Link-2 Convexity and Star-
shapedness

To see that any starshaped polygon is link-2 ©-
convex, we note that any two points in a starshaped
polygon see some point in the kernel. A link-2 con-
vex polygon is not necessarily starshaped because
every pair of points does not necessarily see the
same point z. Motwani et al. [7] showed that for
O = {0°,90°} any link-2 O-convex polygon is O-
starshaped. By Observation 1, this holds for any
O with |O] = 2. For |O] > 2, link-2 O-convexity
is not necessarily equivalent to O-starshapedness.
In this section we exhibit a class of visibility in-
stances for which the equivalence of starshapedness
and link-2 convexity does hold. This class of visi-
bility instances does not contain all orthogonal vis-
ibility instances, but does have an interesting Helly
like characterization.

Figure 5 The chord 4y intersects the chord 7;.

We say that a set of dents D covers a polygon P
(or D is a covering set for P) if P = Upep B(D).
If |D| = 2, we say that D is a covering pair for P.
We say that a dent D covers a point p if p € B(D).

Lemma 3 A polygon P is O-starshaped if and
only if it contains no covering set of dents.

Lemma 4 If P is link-2 convez, then it contains
no covering pair of dents.

Let D be a set of dents. ©(D) denotes the set
{6(D;) | D; € D} and the span of D denotes the
span of O(D).

Lemma 5 Let D be the set of dents in the bound-
ary of a simple polygon P such that the span of
D is at most 180°. For any dent D € D, if
(6(D)+180°) g ©(D) then A(D) is a hat polygon.

Lemma 6 Let P be a hat polygon. Let e = (I,r)
be an edge of P where r is after | in the counter-
clockwise traversal of the boundary of P. Let by and
by be points in the interior of e. Let o = (bo,20)
and v, = (by,t1) be two chords of P such that ei-
ther )

1. o intersects 11 (see Figure 5), or

2. The eztensions of 49 and v, to lines intersect
in the half plane defined by e not containing P
(see Figure 6).

If Ltobor < Lt bir, then ty is encountered before
t1 on a counterclockwise walk of the boundary of P
from r.
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Figure 6 The extensions of 49 and v; to lines in-
tersect in the halfplane not containing P.

Given two oriented chords 8¢ = (79,¢0) and
61 = (m,¢1), we say that § crosses §; and write
8o ba 6y if the intersection of the chords 49 and 1;
is a proper crossing. We use Dy ba D; as equiva-
lent notation for Dy ba D;. Let I(D) (respectively
r(D)) denote the endpoint of D incident on By(D)
(respectively B.(D)).

Lemma 7 Let Dy and D, be dents such that
{8(Do),6(D1) } C [0°,180°] and Do >a D;.

(Do) € B(D1) & 0(D1) < 6(Dy)
r(Do) € B(D,) & 08(D,) > 6(D,)

Lemma 8 Let D be the set of dents in the bound-
ary of a polygon P with the span of D at most 180°.
If D contains no covering pair, then D contains no
covering set of dents.

Proof Let D be the set of dents in the boundary
of a polygon P. Suppose that the span of D is at
most 180° and D contains no covering pair. With-
out loss of generality, suppose the orientations of
dents in D are contained in the (closed) upper half
plane induced by a horizontal line. Let D’ be the
set of maximal elements of D. If there is a covering
set of dents in D then there is a covering set in D’.
Suppose there were a covering set of dents in D’.

We first show the following.

({ Do, D1} € D) = (Do > Dy) (1)
Let Dy and D, be two elements of D’. Since D,
and D; are both maximal, it follows that
B(Do) ¢ B(Dy)
B(D:) ¢ B(Dy).

Figure 7 Dents covering the endpoints of a maxi-
mal dent chord.

Since { Do, D, } is not a covering pair,
A(Do) N A(Dy) # 0.

It follows that Dy ba D,.

Suppose the orientation of some D € D’ were
0° or 180°; it follows the associated dent chord
D would be vertical. Let p be the highest of
{i(D),r(D)}. Let D, be a dent that covers p.
From (1), D va D,. But this would imply that D
had an orientation strictly between 180° and 360°,
which is a contradiction. Thus if there exists such
a D,, there is no covering set for D. We can now
assume that

(DeD')= (0°< (D)< 180°)  (2)

Let D* be some element of D’. A dent D is called
a right dent if 0 < (D) < 6(D*), and a left dent
if 9(D*) < 8(D) < 180. From (1) and Lemma 7 we
know that I(D*) must be covered be a right dent
and r(D*) must be covered by a left dent. Let 3 be
the path along the polygon boundary from I(D*)
to r(D*) O-above D*. Let D; be the left dent in
D’ whose chord intersects 3 closest to I(D*). Let
D, be the right dent in D’ whose chord intersects
B closest to r(D*) (see Figure 7).

From (1) D; and D, must both cross D*. It
follows from Lemma 7 that

ﬁcﬂﬂ = r(Di)
D.ng = uD,)

From Lemma 5, A(D*) is a hat polygon. Since
D,. ba D, it follows from Lemma 6 that r(D;) must
be closer to r(D*) on 8 than I(D,) is. Let D, be
some dent that covers r(D;). From (1) D, must
intersect Dy. Since D, covers r(D;) and 8(D,) is
contained in the upper half-plane, it follows from
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Lemma 7 that 6(D;) < 0(D.). Since D; is a left
dent,

8(D*) < 6(Dy) < 8(D.) < 180°.

It follows that D, is a left dent. Since D, ba D;

and 6(D;) < 0(D,) it follows from Lemma 6 that
D, intersects 3 closer to I(D*) than D; does. This
contradicts our definition of Dy, so there is no cov-
ering set of dents in D’, hence no covering set of
dents in D. u

We can restate the previous lemma in a man-
ner analogous to Helly’s theorem for planar convex
sets.

Corollary 1 Let D be the set of denis in the
boundary of a polygon P with the span of D at most
180°. Let A be the set { A(D)| D € D}. If every
pair of elements of A has a point in common, then

Ngea@# 0.

We have now established the following theorem:

Theorem 1 Let (P,0) be a visibility instance
with the span of be the set of dents in the boundary
P at most 180°. If P is link-2 O-convez then P is
O-starshaped.

If we specialize to the case of O = [0°,180°), i.e.
the standard notions of visibility and convexity, we
have the following corollary:

Corollary 2 Link-2 convez one-fillable polygons
are starshaped.

4 Conclusions

We have shown that if the span of the orientations
of dents in the boundary of a polygon P is at most
180° then O-star cover is reducible to link-2 O-
convex cover. Let P, be defined to be the class of
visibility instances (P, O) such that |[O| = 2. The
results of this paper do not imply those of Motwani
et al. [6]; thus we are left with the following open
question.

Question 1 Is there a class P, of visibility in-
stances such that Py C Py, and V(P,0) € Py P is
O-starshaped if and only if P is link-2 O-convez?
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