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RECONSTRUCTION OF PARALLEL LINE SEGMENTS
FROM ENDPOINT VISIBILITY INFORMATION

S. K. WISMATH*

Abstract. In general, visibility reconstruction problems involve determining a set of objects in the
plane that exhibit a specified set of visibility constraints. In this paper, an algorithm for reconstructing
a set of parallel line segments is presented, from specified visibility information contained in an extended
endpoint visibility graph. The algorithm runs in polynomial time and relies on simple vector arithmetic
to generate a system of linear inequalities.

1. Introduction. There are many problems in computer science that are directly
or indirectly concerned with the visibilities inherent among a collection of objects in the
plane. Such problems arise in graphics, motion planning, computational geometry, and
VLSI design, for example. Although the type of objects and the definition of visibility
frequently vary, most results that deal explicitly with visibility issues focus on either
the computational or structural properties of visibility.

Given a set S of n disjoint line segments in the plane, the endpoint visibility
graph G.(S) consists of 2n vertices corresponding to the endpoints of S and an edge
set representing pairs of visible endpoints: vertices u and v of G.(S) are joined by
an edge if and only if the corresponding endpoints of S are visible (i.e. connectable
by a line segment that intersects no other segment of §). Traditionally, this edge set
is augmented by the segments themselves, i.e. if u and v are endpoints of the same
segment of S, then (u,v) is included as an edge. Research on visibility graphs has
focused on the following main problems; see O’Rourke [5] for a more complete survey.

o Construction: Given a set of objects determine the associated visibility graph.

e Recognition: Given a graph, determine whether it represents the visibility
graph of some set of objects. The general problem is not known to be in
NP, but Everett [3] has shown that for line segments forming a polygon, the
problem is in P-space.

o Characterization: Can the class of visibility graphs be nicely characterized?
Several properties of visibility graphs have been identified, particularly for spe-
cial classes of polygons.

o Reconstruction: Given a visibility graph G, create a layout of objects consistent
with G. :

In this paper, it is the reconstruction problem that is solved for a set S of line
segments to be embedded on specified parallel tracks when an extension of a visibility
graph is given. There are very few reconstruction results of this form in the literature.
For the case of line segments, related results can be found in [1], [7], and [8]. Variants
of the polygon reconstruction problem are discussed in [2], and [4].
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Let G.(S) denote the embedded endpoint visibility graph of a set S of line segments
as defined above. Then for each endpoint v of S, the circular ordering of the endpoints
visible to v is known. For an endpoint u visible to v, define Stab (u,v) as the name
of the first segment of S encountered by the ray from v in the direction of ww. The
symbol “co” will be used, if this ray encounters no segment of S. Define GT(S) as the
graph G.(S) supplemented with this stab information, namely for each edge (u,v) of
G.(S) the two stabs stab (u,v) and stab (v,u) are stored at vertices v and u respectively,
inserted in sorted order. Thus, the cyclic ordering about each vertex v of GT(.S) consists
of pairs of “visibility vectors”, spaced = radians apart. Given G7(S), the “view” from
a particular endpoint v can be computed by a single rotational sweep about v. This
view is slightly weaker than the traditional visibility polygon which is normally specified
as an ordered collection of explicit corner points on the segments of S. If u and v are
endpoints of the same line segment, and S consists of vertical line segments, then the
stabbing information can be used to determine those neighbours of u that lie strictly
to the left of u and those that lie to the right of u. Denote by L(u) (respectively R(u)),
the clockwise ordered set of neighbours of vertex u to the left (respectively right) of u

in GT.

2. Reconstruction from visibility information. The general reconstruction
problem is to determine a set S = {s,33,...8,} of non-intersecting line segments in the
plane, whose visibility graph is equivalent to a given target visibility graph. In this
paper, we consider the restricted problem in which the segments are to be embedded on
specified vertical tracks, defined by the lines X =¢,, X =t,, ... , X =t,, (t; #t;) and
the target visibility graph is the extended visibility graph G7 described in the previous
section. Initially, assume that the lengths of each segment [, [,,... [, are also known,
and then only the bottoms of the segments, denoted by b, by, ...b, must be determined,
and segment s; will have bottom coordinates (b;,¢;) and top coordinates (b; + [;,¢;).
Finally, the track values must also be available for endpoints - denote by t(p) the track
value for endpoint p.

Now, given a target visibility graph G, the coordinates of the endpoints of S are
determined as follows. The visibility information of GT must be respected in two ways.
In the embedding of S, visible endpoints must be visible, and non-visible endpoints
must be blocked by some segment. It is the stabbing information available in GT that
will be used-to constrain the locations of the endpoints to ensure visibility. Each pair
of visible endpoints in G, generates two stabs - one in each direction. The forward
stab will be the vector pointing in the positive X direction, and the backward stab in
the negative direction. Consider a stab of the form in figure 1, in which stab(b;,b;) is
sx. The forward stab generates two inequalities restricting the layout of segment s,
namely that the bottom of b; be below the stab line and that the top be above it. For
this particular case, these two inequalities can be expressed in terms of vectors as:

ty — t;
b < b; + tk-t-(bj—bi)

] i
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The backward stab can be expressed in a similar fashion as a restriction on s, as follows:

tj
bh<b+t_t(b )

and

to—t
by + Ih > b + ~—L(b; — b;)
ti —t;

Stabs to infinity are ignored. Label the inequalities produced in this manner, Type 1
inequalities.

It is also imperative that visibilities not be blocked in the reconstructed layout and
thus for each visibility, inequalities must be generated to ensure that line segments are
constructed on the appropriate side of the visibility (i.e. above or below it). Let p and
q be a pair of visible endpoints, with ¢(p) < t(gq) and with stab (p,q) = r and stab
(g,p) = o. Refer to figure 2.

Then it is necessary to ensure that all the intervening segments between ¢(0) and
t(r) do not intersect the line I(p,q). Determining all such segments, for each visibility,
would be prohibitively expensive and unnecessarily redundant. Instead, exactly six
critical segments will be determined and constrained.

Let p* be the first vertex clockwise from o in L(p).

Let p~ be the first vertex counterclockwise from o in L(p).

Let g* be the first vertex counterclockwise from r in R(q).

Let ¢~ be the first vertex clockwise from r in R(q).

By constraining p* and g% to lie above the line {(p,q) and p~ and ¢~ to be below it,
the two stabbing rays are guaranteed to be unblocked to o and r.

The bars that lie between ¢(p) and ¢(q) must also be considered. Let p' be the first

vertex counter-clockwise from g in R(p), and let p' be the first vertex clockwise from ¢
in R(p).
Constraining p' to lie above line {(p, q) and p! to be below it ensures that the visibility
between p and g is not obstructed in the reconstruction. Note that p' and p! do not nec-
essarily lie between p and g, however any segments between and above p and ¢ must also
be above the visibility segment p,p', and will ultimately be so constrained. Also, note
that any of p!,p!,p*,p™,q",q~ may be undefined, in which case no inequality is cre-
ated. These six constraints (for each visibility pair) are easily expressed as inequalities
and are labelled Type 2 inequalities. For example, g* produces the inequality:

( +) — t(p) ( )
t(q) — t(p)
In total, if there are E pairs of visible endpoints in G?T, then 10F linear inequal-

ities are generated (two for each of the 2E Type 1 inequalities and 6F of the second
type). However, obtaining a solution to this set of linear inequalities is not trivial. One

gt >p+
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technique is to create a fictitious objective function and solve the associated linear pro-
gramming problem. Since linear programming is known to be in the complexity class
P, thus the reconstruction problem also has a polynomial time solution. Moreover since
techniques, such as the simplex method, work efficiently in practice, a solution to these
inequalities can, in fact, be obtained (on average) quickly.

Alternately, it is possible to convert the system of linear inequalities to a system
of linear equalities by introducing a slack variable into each inequality. Each slack
variable must be strictly greater than zero and has a geometric significance, namely the
vertical distance of the constrained endpoint from the associated visibility stab or line.
Solving the resulting system of equalities (by Gaussian Elimination, for example), yields
a parametric solution to the given reconstruction problem which represents the set of all
valid layouts. Unfortunately, determining even a single solution with all slack variables
strictly greater than zero, is, in general, difficult (although solvable in polynomial time).

Finally, note that the inequalities generated are of a highly restricted form - each
contains exactly three unknowns, and thus there may exist more efficient techniques for
obtaining solutions directly.

2.1. Proof of Correctness. It is clear that the 10E linear inequalities generated
by the algorithm are necessary. Let b be a particular solution to the set of linear
inequalities and let S’ be the associated set of line segments. We must show that G7(.S’)
is equivalent to the given target visibility graph G7. Let S be any set of segments whose
visibility graph is indeed equivalent to the target graph. Note that since S’ is embedded
on parallel tracks, no pair of segments can intersect.

LEMMA 2.1. : If p and q are wisible endpoints in S then p',q' are visible endpoints
in S'.

Proof: Let p and g be a pair of visible endpoints in S such that p’ and ¢’ are not
visible in S’. Let the leftmost segment in S’ that blocks the visibility of p’ and ¢, have
top and bottom endpoints v’ and v’. Assume, without loss of generality, that in S, the
segment (u,v) lies above the (p, q) visibility. Then there are two cases to consider.

e p' = v, in which case there is an inequality forcing v to be above the line (p, q).

e p' # v, in which case, p is an endpoint constrained to be above the line (p, q).
Since p and p' are a pair of visible endpoints, v must lie above the line (p,p')
in S. Iterating this argument, proves the existence of a sequence of inequalities
which ultimately restrict v to be above the line segment (p,q). And hence v’ is
similarly constrained to be above the line segment (p’,¢’) in S’ and therefore,
the segment u’,v’ does not block the visibility of p’ and ¢'.

0

LEMMA 2.2. : If p and q are not visible endpoints in S, then p',q’ are not visible
endpoints in S'.

Proof Sketch: Assume ¢(p) < t(gq). The proof involves a "shadow” argument. Imag-
ine a light source at p. Since q is not visible to p, it lies in the umbra of p along the
line X = t(q). It can be argued that the shadows on this line must be consistent in S’
or the visibility graph information will be violated. O
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3. Extensions and Open Problems. A first extension to the previous result is
to simply note that the heights of each bar are also linear in the resulting inequalities
and thus could be considered as unknowns (with the restriction that /; > 0).

A second observation is that if the stabbing information, stab(u,v) explicitly denotes
a particular point on a segment, rather than simply the name of the segment, then
the type 1 constraints become equalities; however the type 2 constraints remain as
inequalities. Thus, the complexity of the problem is not obviously lowered, even if
this explicit stabbing information is specified in GT for each endpoint. In particular,
this extension of G is constructable (in linear time) if the visibility polygons of each
endpoint are specified. (

The technique used in this paper does not easily generalize. The reconstruction
problem is still open for the following two related cases:

o for parallel line segments without specified track information.
e for line segments on non-parallel tracks (for example on two sets of parallel
tracks).

Finally, it should be noted that the general reconstruction problem has some re-
lation to oriented matroids and arrangements of pseudolines. In particular, there is a
fairly straightforward reduction from the Pseudoline Stretchability problem (shown by
Shor [6] to be NP-Complete) to the line segment reconstruction problem.
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Figure 1

Figure 2



