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Extended Abstract

1 Introduction

The original Art Gallery Problem raised by V. Klee asks how many guards are sufficient to
watch every point inside a n-sided simple polygon. A point z is visible to a guard y if the line
segment T7 does not intersect the exterior of the polygon. Chvétal showed that | %] guards
are always sufficient and sometimes necessary to watch any polygon of n edges [1]. Many
variations of this theorem have been explored and many results have been obtained, [4,6]. In
1987, Shermer introduces the concept of hidden guard set [7]. A hidden guard set is a guard
set of points such that no two guards in the set are visible to each other. This corresponds to
“independent dominating sets” in PV G(P), the point visibility graph of P. Shermer showed
that not every polygon admits a hidden guard set on its vertices and that, given a polygon
P, the problem of determining whether such a hidden guard set exists for P is NP-complete.

In this paper we analyze another variation on art gallery problems: in contrast to hide
guards we require that every guard must be watched by another guard. We define VG(S, P),
the visibility graph of a set of guards .S in a polygon P as follows: the vertex set is § and there
is an edge between two guards if they are visible to each other in P. we consider two kinds of
guards: connected guards, such that VG(S, P) is connected and watched guards, such
that each one is watched, at least, by another guard, i.e., in VG(S, P) there are not isolated
vertices. In this paper, following [2], we analyze the combinatorial aspects of these kinds of
guards. In [3], Liaw, Huang and Lee deal the algorithmic aspects of connected guards which
call cooperative guards. They showed that the minimum cooperative guards problem, MCG
problem, (given a polygon P, find the minimum number of cooperative guards necessary to
cover P) is NP-hard. Also they presented linear algorithms for solving the problem on 1-
spiral and 2-spiral polygons.

For connected guards we prove that, g (n), the minimum number of watched guards
necessary to watch any polygon of n vertices, n > 5, is [2?"] '
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If we consider connected guards, then g°(n), the minimum number of connected guards,
is [2] — 1, being the bound % — 2 when the polygon is an orthogonal polygon. The lower
bounds are given by means of examples in section 2. The proofs of the upper bounds are
given in sections 3 and 4.

2 The lower bounds

For watched guards the lower bound is |_35'-‘-J It is clear that a polygon with 5, 6 or 7 ver-
tices needs 2 watched guards. In figure 1 we show an octogon that requires 3 watched guards.

oy

Figure 1. A polygon with 8 edges, t = 6, requiring 3 watched guards

/\/\

Figure 2. A polygon with 10 edges, t = 8, requiring 4 watched guards

A polygon with 10 vertices that needs 4 watched guards is shown in figure 2. This polygon
can be generalized to a polygon with ¢t = 5k + 3 triangles needing 2k + 2 watched guards (see

figure 3).

Figure 3. A polygon with 5k + 3 triangles requiring 2k + 2 watched guards
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Therefore, if P is a polygon with n vertices and ¢ is the number of triangles in one
triangulation of P, t =n — 2
2t 2(n - 2) 2n
W Dl=—l=——|=|—
w2 151 = [ = |15
This establishes the lower bound for watched guards.

If we consider connected guards, the snake polygon shown in figure 4 requires |%] — 1
connected guards.

Figure 4. The "snake” polygon needs | %] — 1 connected guards

For orthogonal polygons the lower bound is 3 — 2. Looking at the most simple periodic
staircase (fig. 5), we check that 7 — 2 connected guards are necessary and sufficient to watch
this polygon. Thus we establish the lower bounds for connected guards.

|

Figure 5. An orthogonal polygon that needs 3 — 2 connected guards

3 Upper bound for watched guards

The upper bound for watched guards is [-23’1 |. The proof is by induction and it follows the
main outlines of O’Rourke’s proof for mobile guards [5]. Let P a polygon and T a triangu-
lation graph for P. O’Rourke uses the identity between the number of combinatorial and
geometric mobile guards necessary and sufficient to dominate and cover triangulation graphs

and polygons, respectively.

Now the combinatorial counterpart of the watched guards are the vertex guards in T such
that any two of them are linked by an arc of T'. It is clear that if a triangulation graph of
a polygon can be dominated by k¥ combinatorial guards, then the polygon can be covered, i.
e. watched, by k geometric watched guards placed at vertices. This implies that a proof of
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the sufficiency of ["%‘J combinatorial watched guards in a triangulation graph establishes the
sufficiency of the same number of geometric watched guards in a polygon with n > 4 vertices.

Following O’Rourke’s proof we must consider the edge contraction of T and utilize the
following lemmas:

Lemma 1(O’Rourke)
Let T a triangulation graph of a polygon P, and T’ the graph resulting from an edge con-
“traction of T'. Then T” is a triangulation graph of some polygon P’.

Lemma 2
Suppose that f(n) combinatorial watched guards are always sufficient to dominate any n-

node triangulation graph. Then if T is an arbitrary triangulation graph of a polygon P with
one vertex guard, Q, placed at any one of its n nodes, then an additional f(n — 1) watched
guards are sufficient to dominate 7. (But, perhaps the guard Q remains without any guard
watching to it).

Then we establish the sufficiency of the bound | 2] for small triangulation graphs and
the existence of a diagonal that will allow us to get the induction step.

Lemma 3
(a) Every triangulation graph of a pentagon can be dominated by two combinatorial watched
guards with one at any selected node.
(b) Every triangulation graph of a hexagon can be dominated by two combinatorial watched

guards with one at one vertex of any selected edge.
(c) Every triangulation graph of a n-polygon with 7> n > 11 can be dominated by Lgsﬁj

Lemma 4 _
If T is any triangulation graph of a polygon P, with n > 12 vertices then there exists a

diagonal that cuts off exactly 6,7,8,9 or 10 edges.
With the preceding lemmas available, the induction proof is a simple enumeration of cases.

Theorem 1
Every triangulation graph T of a polygon with n > 5 vertices can be dominated by 2]
combinatorial watched guards.

Proof.
Lemma 3 establishes the truth of the theorem for 5 < n < 11. Assume now, that n > 12

and the induction hypothesis. Lemma 4 establishes that there is a diagonal that partitions T
into two graphs Ty and T3, where T contains k boundary edges with 6 < k£ < 10. We must
consider each value of k separately. Here we include only one case.
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Case k = 9. (See figure 6)

The presence of any of the diagonals (0,8),(0,7),(0,6),(1,9),(2,9),(3,9) would violate the
minimality of k. So that the triangle L in T; that is bounded by d is either (0,4,9) or
(0,5,9), which are equivalent cases. Suppose L is (0,5,9). Form the graph Ty by adjoining
the polygon 056789 to T5. The polygon 012345 has six edges, and so by Lemma 3(b), it
can be dominated with two combinatorial watched guards, one of them placed at node 0 or
5. We choose node 5. Tp has n — 4 edges and the guard at node 5 permits the remainder
of Ty to be dominated by f(n — 4 — 1) = f(n — 5) combinatorial watched guards, where
f(m) is the number of combinatorial watched guards that are always sufficient to dominate
a triangulating graph of m nodes. By the induction hypothesis, f(m) = [3-5’1‘-_| .

Figure 6. Case k =9

Therefore, [35"5—'5” = | %] - 2 combinatorial watched guards suffice to dominate To. To-
gether with the two allocated in the polygon 012345, we conclude that T is dominated by
|2 combinatorial watched guards.

4 Upper bounds for connected guards

The upper bound for connected guards in general polygons is 3] -1. The proof is similar to
that for watched guards but more simple. Here we omit the proof of this

Theorem 2

The minimum number of connected guards necessary to watch any polygon of n vertices is
n-2
¢°(n) = |——]

In the orthogonal case the upper bound is 3 — 2. Let P an orthogonal polygon with n
vertices. We consider a convex quadrilateralization of the polygon P and let g the number
of quadrilaterals Let be S the set of guards built placing a guard at every diagonal of P
that share two convex quadrilaterals. It.is easy to check that VG(S, P) is connected and
card(§) = ¢ — 1 = § — 2. Therefore, & — 2 connected guards are always sufficient to watch
any orthogonal polygon of n vertices. Thus we have shown the following

Theorem 3
The minimum number of connected guards necessary to watch any orthogonal polygon of n
vertices is

n
g5(n) = 52
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