393

Consecutive guards!
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Abstract
In this paper we define consecutive vertex guards and consecutive edge guards in a simple polygon. We
solve the corresponding Art Gallery problem obtaining the numbers g, (n) and ge(n) of vertex and edge guards
always sufficient and sometimes necessary to guard a simple n-gon. We also obtain linear algorithms to place
these guards, and solve the algorithmic problem of finding the minimun number of consecutive guards for a simple
polygon. Finally we extend the last result to the problem of finding the minimum length path on the boundary

that guards the polygon.

1 Introduction

The classical results in Art Gallery [1-7] solve problems of this kind: How many guards
are always sufficient and sometimes necessary to guard a simple n-gon? The reason why
the question is this and not: Given a simple n-gon what is the minimum number of gquards
needed to guard it?, is that the answer for the latter question depends on the polygon. So
the second one is actualy an algorithmic question. Adding the fact that the algorithmic
problem is NP-complete [8] it is clear that the most interesting problem is the first. But
this situation will change for consecutive guards.

A set of vertex guards in a polygon will be called a set of consecutive guards if they are
placed in consecutive vertices of the polygon. In a same way we define a set of consecutive
edge guards.

For this kind of guards we solve the Art Gallery problem, obtaining linear algorithms
to put them and proving that the problem of the minimum number of guards it is not
NP. We obtain algorithms with complexity O(n?log(n)) for the last problem in both cases:
vertex and edge guards.

Using the same ideas that in the two last algorithms we obtain an other algorithm.
with the same complexity, that computes the minimum length path on the boundary of
the polygon from where the polygon is visible or is guarded.

Let us introduce some notation that will be used in this paper. P will denote a simple
polygon with n vertices and it will be described by the counterclockwise sorted list of its
vertices pypaps - .. pn. The list of edges will be denoted by ejezes ... en, where the edge e; is
the segment with endpoints p; and p;4; for all i € {1,...,n} asuming that p,4; denotes
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2 Consecutive guards

Let us denote by g,(n) the number of consecutive vertex guards always sufficient and
sometimes necessary to guard a simple n-gon. In order to prove theorem 1 we introduce
a previous lemma that allows us to make a shorter proof of the theorem.

Lemma 1

a) A polygon with a guard in every vertex except two is guarded.

b) A polygon with a concave vertex p; that has a guard in every vertex except p;, pi—i
and p;4; is guarded.

Proof. Consider a triangulation of the polygon. Then every triangle has at least one
vertex where there is a guard because the unique triangle that could have the three
vertices without guards is p;_1p;pi+1 (only for the case b). But this triangle can not
belong to the triangulation because p; is a concave vertex. So every triangle is guarded

and then the polygon.
A

Theorem 1 g,(n) is defined as follows:

1 if n=3
go(n)={n-3 if n>4andeven
n—4 if n > 3 and odd

Proof: A- g,(n) guards are sometimes necessary:
i) If n =3 or n =4 the result is obvious.

) If n > 6 and even the “windmill” with

-

Figure 1

tips (figure 1) needs n — 3 guards.

o] 3

-1 .
i) If n > 5 and odd the “comb” with -T-L—-z-— tips (figure 2) needs n — 4 guards.

i

Figure 2

B- g¢,(n) guards are always sufficient: .
i) If n = 3 or n = 4 the result is true because these polygons are star-shaped.
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11) If n > 6 and even. Suppose that the polygon is not convex. in the other case the
result is obvious. Then there is a concave vertex p; and by lemma 1 putting
guards in every vertex except p;—1, pi and pif1 the polygon is guarded.

7ii) If n > 5 and odd. Consider a triangulation of a the polygon and his dual tree T

First we prove that there exists a node of T with degree 2.
Suppose by contradiction that every node of T has degree 1 or 3 and denote by
k, and k, the number of nodes in each case. It is easy to prove by induction that
ky = ky +2, so the number of nodes 2k; +2 is even and this means that n is also
even. This contradicts the initial hypothesis.

Figure 3
Let prpipi+1 be one triangle which corresponds to a 2 degree node of T (see figure
3). Note that k # 7, ¢ + 1 because the degree of the node is 2. Putting guards
in every vertex except pi—i, pi, Pi+1 and pit» the polygon is guarded. To see
that we split the polygon by cutting the diagonals pip; and prpi+1. The three
remaining subpolygons are guarded by lemma 1.

A

For edge guards we denote by g.(n) the number of consecutive edge guards always
sufficient and sometimes necessary to guard a simple n-gon.

In this paper we only prove that ge(n) guards are sometimes necessary, the complete
proof can be seen in the full paper version. This part needs a very simple arithmetic
property shown in the following lemma.

Lemma 2 The equation 5n; + 3n2 = k has integer solution n,ny > 0 for every integer
k> 8.

Proof The result is true for k¥ = 8,9 and 10. For any k > 10 we decompose k in this way:
k = 3%k, +k; where k; > 0 and k; = 8,9 or 10. Then we express ky = 5n} + 3n;
and finally k = 5n} + 3(nj + k1).

A

Theorem 2 g.(n) is defined as follows:

1 if 3
ge(n)={n’_5 ;f

3 IA

v s
o N
o

Proof. A- g.(n) guards are sometimes necessary:
i) If 3 < n < 6 the result is obvious.
i) If n = 7 figure 4 shows a 7-gon that needs 2 edge guards.
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Figure 4
1#i) If n > 8 we decompose n = 5n; + ny (such decomposition exists by lemma 2).
The polygon with n; arrows and n, tips (figure 5) needs n — 5 guards.

Figure 5

B- g(n) guards are always sufficient: See the full paper for this.

3 Placing guards

Given a simple n-gon we want to put a number of consecutive guards less or equal than
g»(n) such that the polygon was guarded. We do that with the Algorithm 1 following
the ideas of the first theorem proof. This means that we need a triangulation of a polygon.

Algorithm 1
Input: A simple polygon P and one triangulation T of it.
Step 1: Compute the number n of vertices.
Step 2: If n is even:
- If the polygon is convex put one guard in one vertex. End.
- Else find a concave vertex p; and put guards in every vertex except
pi—1, pi and piy1. End.
Step 3: If n is odd find a triangle prpipi+1 (k # i,7 + 1) whose node in T has degree 2.
Put guards in every vertex except pi_i, Pi, Pi+1 and pi2. End.

All steps have linear complexity and then the algorithm 1 is linear. We want to
note that theorem 1 can be proved without using any triangulation of a polygon and this
proof provides a linear algorithm whose input is just a simple polygon. We also remark
that if the input is an even size polygon then there is an algorithm that runs in constant

time. The proof of theorem 2 allows a linear algorithm to place g.(n) consecutive edge
guards in a simple n-gon. All these results are included in the full paper version.
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4 Minimum number of guards

It is known that a set of vertex guards that sees the boundary of a simple polygon
does not necessary guard the polygon (figure 6.a). But for consecutive vertex guards this
result is true, and for consecutive edge guards it is sufficient to see all vertices in order to
guard the polygon. This fact is proved in the following lemma.

Lemma 3
a) A set of consecutive vertex guards that sees the boundary of a simple polygon guards
the polygon.
b) A set of consecutive edge guards that sees all vertices of a simple polygon guards the

polygon. , )
a) b)

c)
Figure 6
Proof. Suppose by contradiction that there exists a point p which is not seen by any
guard. Then all guards are placed in one pocket (or two consecutive pockets for the
case a) of the visibility polygon fo p. (see figure 6.5 and 6.c). In case a we conclude
that there exists a point on the boundary that can not be seen by any guard and in
case b one vertex that can not be seen by any guard. This contradicts our hypothesis
and concludes the proof.

A
We split the boundary of the polygon P in segments such that every point in each of
them sees the same set of vertices (figure 7). This can be done computing the vertices of
all visibility polygons and sorting them counterclockwise on the boundary. We denote by
L the sorted list of them, define an interval like a set of consecutive segments of L and
denote by Ly, L;...Ly the lists of intervals that describe the visibility polygons from the

vertices. The complexity of these is O(n) and for L is O(n?).

Figure 7

The idea for the algorithm is to compute the minimum set S; of consecutive vertex
guards starting in each vertex p; and going counterclockwise. Finally we choose the mini-
mum set of guards between the n computed set of guards. If S; has been computed, Si+1
will be obtained by removing the list Lgsi(s;) and by adding the list Lyast(s;)+1 (where
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last(S;) and first(S;) denotes respectively the last and first vertices in the list S;). until
the polygon has been completely guarded.

Each segment in L has a level that indicates the number of vertices, actualy in the set
of guards. that see the segment. Then, adding (removing) the list L; increases (decreases)
by 1 the level of the visible segments from p;.

Algorithm 2
Input: A simple polygon P.
Step 1: Compute all visibility polygons from vertices and the lists L, L, L,,...L,.
Step 2: Set to 0 the level of each segment in L, S =0 and : = 1.
Step 3: .*\Clcl(Llast(g)+1), S =5+ Dlast(s)+1-
Step 4: If S does not guard the polygon go to step 3.
Step 5: S; =S, 1 =1+ 1, Remove(Lgisy(s))s S = S — Phirst(S)-
Step 6: If i < n go to Step 3.
Step 7: Choose the minimum set of S ...S,. End.

Implementing the list L in a balanced binary tree with a field for the level. the functions
add and remove need O(nlog(n)) time. Function remove is called n —1 times and function
add at most 2n — 1 times. Then the cost of steps 3,4 and 5 is O(n®log(n)). It is easy to
see that the rest of steps do not increase the complexity.

This algorithm can be fitted with the same complexity to solve the problem for edge
guards and for the minimum length path over the boundary that guards the polygon. See
the full paper for this. The main open question is how to improve the complexity of these
algorithms.
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