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Abstract

Let P and @ be two disjoint convex polygons in the plane
with m and n vertices, respectively. Given a point z in P,
the aperture angle of z with respect to @ is defined as the
angle subtended by the cone that contains @, has apex
at z, and has its two rays emanating from z tangent to
Q. We present algorithms with complexities O(nlogm)
and O(n + m) for computing the maximum aperture an-
gle with respect to @ when z is allowed to vary in P.
To compute the minimum aperture angle we modify the
latter algorithm obtaining an O(n + m) algorithm. In
fact, this is optimal as we show that Q(max{m,n})is a
lower bound for the minimization problem. Finally, we
establish an ©(n) time lower bound for the maximization
problem.

1 Introduction

Visibility plays a singular role in computer graphics,
robotics, computer vision, operations research and sev-
eral other disciplines of computing science and computer
engineering (8], [11]. The traditional model of visibil-
ity investigated in computational geometry allows for a
guard or camera to see in all directions, i.e., the aper-
ture angle is idealized to be 360 degrees. More recently,
computational geometry research has begun investigat-
ing more realistic models of visibility where the aperture
angle (or field-of-view angle as it is called in robotics [4],
[5]) is restricted to be some angle 0 less than 360 degrees.
For example, given a convex polygon and a camera with
aperture angle 6 situated outside the polygon, Teichman
[12] computes a description of all the points in space

*Research supported by an NSERC and KILLAM postdoctor-
ate fellowship. Address: Department of Computer Science, Univer-
sity of British Columbia, 201 - 2366 Main Mall, Vancouver, British
Columbia, V6T 1Z4. E-mail: jit@cs.ubc.ca.

tResearch supported by Accion CICYT no. 0747-C02-02-E.
Address: Departamento de Matematicas 2, Universitat Politecnica
de Catalunya, Spain. E-mail: HURTADO@ma2.upc.es

tAddress: Departamento de Matematicas, Universidad Au-
tonoma Metropolitana Iztapalapa, Mexico D.F., Mexico. E-mail:
erc@xanum.uam.mx

SResearch supported by grants NSERC-OGP0009293 and
FCAR-93ER0291. Address: School of Computer Science, McGill
University, 3480 University, Montréal, Québec, H3A 2A7. E-mail:
godfried@cs.mcgill.ca.

Elsa Omaifa-Pulido? Godfried Toussaint$

where a camera may be placed in such a way that the
polygon lies completely in the field of vision of a camera
with aperture angle §. A member z of a set of points S
is said to be f-visible if a camera with aperture angle 6
can be placed on z in such a way that no other member
of S lies in the camera’s field of vision. Avis et al. [1]
obtained optimal algorithms for finding all the #-visible
points in a set S. Devroye and Toussaint [6] investigate
the cardinality of the #-visible points among a set of spe-
cial points which are the intersections of a set of random
lines. Finally, in another variant of the problem, Bose et
al. [2] have shown that n cameras, each with specified
aperture angle not exceeding 180 degrees, can be placed
at n fixed locations in the plane to see the entire plane
if and only if the aperture angles sum to at least 360
degrees.

The simplest of these types of problems is often found
as an exercise in calculus texts and called the picture-on-
the-wall problem (see for example [10], p. 427, problem
# 20). In this problem a picture hangs on the wall in
a museum above the level of an observer’s eye. How
far from the wall should the observer stand to maximize
the angle subtended at the observer’s eye by the top
and bottom of the picture? While this problem is easily
solved with calculus, an elegant solution that does not
use calculus has been known for some time [7]. This
same solution holds for the more general problem where
the picture may not be orthogonal to the floor [13].

In this paper we consider a generalization of the
picture-on-the-wall problem, namely, the problem of
computing the aperture angle of a camera that is al-
lowed to travel in a convex region in the plane and is
required to maintain some other convex region within
its field of view at all times. More specifically, let P and
Q@ be two disjoint convex polygons in the plane with m
and n vertices, respectively. Given a point z in P, the
aperture angle of z with respect to Q, denoted 8(z), is
defined as the angle subtended by the cone that con-
tains @, has apex at z, and has its two rays emanating
from z tangent to Q. Note that @ need not be a con-
vex polygon, however, since a cone containing @ also
contains its convex hull, we can restrict our attention to
convex polygons. We present an O(n + m) time algo-
rithm for computing the minimum aperture angle with
respect to Q when z is allowed to vary in P. This is
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optimal as we present an Q(max{m,n}) lower bound for
the problem of computing the minimum aperture angle.
We also present algorithms with complexities O(n + m)
and O(nlogm) for computing the maximum aperture
angle with respect to . Thus, when m = o(nlogn) the
first algorithm is faster than the second one. However,
if m = Q(nlog'**n), for any € > 0, the second one is
faster. Finally, we prove an Q(n) time lower bound for
the maximization problem. Most proofs are omitted in
this extended abstract. For full detailed proofs, we refer
the reader to the technical report [3].

2 Geometric Preliminaries

In this section, we develop the geometric tools used to
solve the different problems mentioned in the introduc-
tion. The model of computation used throughout this
paper is the extended real RAM (for details refer to [9]).

Given a convex set C, let 8C, int(C), and ext(C) de-
note the boundary, interior and exterior of C, respec-
tively. Let Z(abc) denote the angle at b in triangle abc.
Let [ab] and (ab) denote, respectively, the closed and
open line segments between two points a and b.

To gain insight into a general solution of the prob-
lems at hand, we first analyze simplified versions of the
main problem. Solutions to these simplified problems
will form the basis upon which the general algorithms
will be constructed. The first simplification will be re-
ferred to as the Segment-Polygon Problem, where the
region the camera is in is still the convex polygon P, but
the convex polygon @ (the object that must kept in the
field of view) is replaced by a line segment [ab)].

2.1 The Segment-Polygon Problem

Problem Statement: Find a point z in a convex poly-
gon P such that 6(z) is maximum with respect to a given
segment [ab] that does not intersect P (6(z) is the angle
at z in triangle abz).

In order to present the solution to this problem, we
first define some geometric concepts related to the solu-
tion. First of all, unless stated otherwise, we always as-
sume that the vertices of a polygon are given in counter-
clockwise order.

Definition 2.1 A line L is a critical separating line of
support of P and [ab] if it separates P from [ad)], and it
is tangent to both P and [ab).

See Figure 1 for the definitions to follow. Let the crit-
ical separating lines of support to P and [ab] be tangent
at {p;,a} and {p;, b} respectively. These lines partition
the boundary of P into two chains, and also partition the
plane into four regions (cones), two of which are empty,

one which contains P and the other [ab]. Denote the re-
gion containing P by Rp. Now, the line segment [p;p;]
partitions Rp into a triangle and an unbounded region.
The chain (p;, pit1, ..., pj) contained in the triangle is re-
ferred to as the interior separating boundary of P with
respect to [ab], denoted by ISB(P). The complementary
chain 8P — ISB(P) is denoted by ISB(P)°. Note that
pi and p; will also be assumed to be contained in the
complement, ISB(P)°.

Figure 1: Illustration of definitions.

If the line L(a,b) passing through [ab] intersects
int(P), then the chain ISB(P) is contained in the tri-
angle (pi,c,p;), where p; and p; are the two tangent
points as defined above and ¢ is the extreme point of
the segment [ab] that is closer to P (using the defi-
nition of distance from a point b to a polygon P as
min{d(b,z) | z € P} and d is the euclidean distance).
Thus, L(a,b) divides the convex polygon P into two
convex polygons P; and P,, where L(a,b) does not in-
tersect the interior of either and ISB(P) is partitioned
into ISB(P;) and ISB(P;). Furthermore, the solution
to our problem for P will be the maximum of the solu-
tions obtained for the two problems on P, and P, sep-
arately since on L(a,b) the maximum aperture angle is

. zero. Therefore, to solve the Segment-Polygon problem,

we may assume that L(a,b) does not intersect int(P).

Lemma 2.1 The mazimum aperture angle is reached at
a unique point £ € ISB(P).

Lemma 2.1 establishes the existence of a unique global
maximum over ISB(P). However, this does not pre-
clude the existence of other possible local maxima. For-
tunately, 6(z) is an upwards unimodal function over

ISB(P).

Lemma 2.2 The function 6(z) with respect to the seg-
ment [ad] is upwards unimodal over ISB(P).

The importance of showing that 6(z) is an upwards
unimodal function becomes evident when developing an

-74 -



algorithm to obtain the maximum. Upward unimodality
allows one to use binary search. The algorithm to find
the maximum aperture angle follows from the discussion
and is presented below. We assume in this paper that
the vertices of the polygons are stored in arrays.

Algorithm 1: Compute mazimum aperture angle in a
convez polygon with respect to a segment.

Input: A convex polygon P and a segment [ab] such that
L(a,b) does not intersect P.

Output: A point £ € P such that 6(z), with respect to
[ab], is maximum over P.

1. Compute the chain ISB(P).

2. Determine the point =, where the circle C through
a and b is tangent to P, by using binary search over
ISB(P).

3. Exit with z.

Lemma 2.3 Algorithm 1 finds in O(logm) time a point
z € P, such that 8(z) is mazimum with respect to the
segment [ab).

We now turn our attention to the minimization version
of the Segment-Polygon problem. In order to present a
complete characterization of the solution to this problem,
we first define some additional geometric concepts.

Definition 2.2 A line L is a common tangent of P and
[ab] if it is tangent to P and [ab], and it leaves P and
[ab] in one of the closed halfplanes defined by L.

ECT(P)°

Figure 2: More definitions.

Let the common tangents of P and [ab] be tangents at
{pr,a} and {p,, b}, respectively (see Figure 2). We define
ECT(P) to be the part of the boundary of P contained
in the convex polygon (p;, a,b,p,). Let ECT(P)° be the

complementary chain 6P — ECT(P). We may assume
that L(a,b) does not intersect int(P), since we may par-
tition ECT(P) into the corresponding chains ECT(P;)
and ECT(P;) as we did for the maximization problem.

Lemma 2.4 Any point £ in P where the aperture angle
reaches the minimum value lies on a vertez of the chain

ECT(P)°.

To find the minimum aperture angle with respect to
[ab], we evaluate f(z) at the endpoints of every edge in
ECT(P)° and select the global minimum. We conclude
with the following.

Lemma 2.5 In O(n) time a point z € P can be found
such that (z) is minimum with respect to the segment

[ad].

2.2 The Polygon-Line Problem

We now take a second step towards the general problem
and study a simplification referred to as the Polygon-
Line Problem, where the object that must kept in the
field of view is a convex polygon @, but the region where
the camera is allowed to lie is a line L.

Problem Statement: Given a convex polygon @ and
a line L, find a point € L such that the aperture angle
6(z) is maximum.

Figure 3: Partition of line L

To simplify the notation, we assume that no edge of Q
is parallel to the line L. We also assume that the polygon
and the line do not intersect. Without loss of generality,
assume L is the X-axis, and let g, be the vertex of Q with
the highest y-coordinate and ¢; be vertex with the lowest
y-coordinate (see Figure 3). Thus the boundary of Q is
decomposed into a left chain Q. = {ga,qn+1, ..., ¢} and
a right chain Qs = {q1, q141,...,qn}. We partition L by
extending every edge of Q, until it intersects L at a point
a; and every edge of @, until it intersects L at a point b;.
Finally we merge the ordered sets A = {a1,ay,...,a;_p}
and B = {b1,bs,...,bp_;} (subindex addition is done
modulo n) to obtain an ordered set R = {ry,rs,...,m}.
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The partition of L consists of the intervals Iy, = [rg, rg+1],
k=1,2,...,n—1, together with two unbounded inter-
vals I = (—o0,r1] and I, = [ry, +00).

The following lemma provides the link between the
Segment-Line problem and the Polygon-Line problem.

Lemma 2.6 For -every interval Iy = [rk,rr41) in the
partition, there are two vertices ¢, € Q, and q; € Qp,
that determine a diagonal d, = [g,q:] of Q, such that for
every point z € I, the aperture angle 6(z) with respect
to Q is given by £(gszq:).

As a consequence of Lemma 2.6 the aperture angle
function 6(z) with respect to Q is piece-wise defined over
L. For every interval I, the problem is reduced to the
Segment-Line problem, where the segment is determined
by the diagonal di of Q. Therefore, to find the maxi-
mum (resp. minimum), we simply compute candidates
for the maximum (resp. minimum) for every interval
and choose, as the global maximum (resp. minimum),
the maximum (resp. minimum) of all the candidates.

Theorem 2.1 In O(n) time a point ¢ € L and y €
L can be found such that 6(z) is mazimum and 6(y) is
minimum with respect to Q.

3 Two Convex Polygons

We now have the tools to solve the general problem where
the object that must kept in the field of view is a convex
polygon @, and the region where the camera can lieis a
convex polygon P. We assume that P = [p1,p2,...,Pm)
and @ = [q1, 92, - - -, qn) are each represented by an array
in counter-clockwise order.

Problem Statement: Given two disjoint polygons P
and @ in the plane with m and n vertices respectively,
find points z, z € P such that 6(z) is maximum and 6(z)
is minimum.

3.1 The Maximization Problem

Lemma 3.1 A point £ € P where the aperture an-
gle reaches the mazimum value must lie on the chain

ISB(P).

Given that the maximum aperture angle is reached
at a point on ISB(P), we define a partition of ISB(P),
similar to the partition of the line in the Polygon-Line
problem. Let ISB(P) = (pi,pit1,-.-,pj). Notice that
the extension of the edges of ISB(Q) and ECT(Q)° do
not intersect P. Therefore, we only consider the exten-
sion of edges in Q — (ISB(Q)+ ECT(Q)¢). This divides
the boundary of Q into two chains, @, and Q. We de-
note by A the ordered set of intersection points between
the extended edges of Q, and ISB(P), and by B the

ordered set of intersection points between the extended
edges of @y and ISB(P). The ordered set R of ISB(P)
is determined by merging the two ordered sets A and
B. The counter-clockwise order of the points of R is
(r1 = pi,r2,73,...,75s = pj). Let Ry represent the piece
of the boundary of ISB(P) between ry and riy41. By
construction, we see that for every point z in Rg, the
aperture angle 6(z) is determined by a diagonal of Q
formed by a vertex of @ in @, and one in @y.

Lemma 3.2 For every polygonal chain Ry C ISB(P)
in the partition of ISB(P), there are two vertices g €
Q. and q: € Qp such that for every point x € Ry, the
aperture angle O(x) with respect to Q is given by L(qrzq:).

As a consequence of Lemma 3.2, the aperture angle
function 8(z) with respect to @Q is piece-wise defined over
the chain ISB(P) and for every region R, the problem is
reduced to finding the maximum aperture angle between
a convex chain and a line segment. Therefore, to find the
maximum, it suffices to find the global maximum among
the candidate maxima obtained for each region R;. We
summarize the algorithm below.

Algorithm 2: Mazimum aperture angle

Input: A convex polygon @ with n vertices and a convex
polygon P with m vertices. PN Q is empty.

Output: A point z in P such that the aperture angle
6(z), with respect to @, is maximum.

1. Find the partititon of ISB(P) into chains
Ri,Ra,...,R,.

2. For each convex chain Ry find the diagonal [g,g:] in
Q such that for every point £ € Rj, the aperture
angle 0(z) with respect to @Q is given by Z(g,zq).

3. For each chain Ry, find z; € R such that the aper-
ture angle 6(zk) is maximum over all points in R;.

4. Exit with the maximum of all maxima computed in
the previous step.

The complexity of the algorithm is dominated by
the first step which is to partititon /SB(P) into chains
Ry, R,,...,R,. We apply two different techniques to
compute the partition. The first approach takes advan-
tage of the fact that the intersections of the extensions
of the edges of Q, (resp. @) with ISB(P) are ordered
along ISB(P). Suppose that Q,, @ and ISB(P) have
been computed. The intersections of the extensions of
Qq (resp. Q) with ISB(P), can be computed by walking
across ISB(P) once. Therefore, the partition of ISB(P)
can be computed in O(n + m) time.

The second approach takes advantage of the follow-
ing. Observe that when an edge [gjgj+1] in ECT(Q)°
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is extended, it does not intersect 0P, and (g;jqj+1p)
makes a left turn for any point p in P. When an edge
(¢5,9j+1) in ISB(Q) is extended, it does not intersect
OP and (gjgq;+1p) makes a right turn for any point p in
P. If an edge (gj,gj+1) of Qq is extended, then the ray
from g; in direction of g;4; intersects 0P at two points
ar € ECT(P) and z; € ECT(P)®, that together with
g; and gj41 are ordered as g;-gj+1-ar-2; along the ray.
Finally, if an edge (g;,9;+1) in @ is extended, then the
ray from g;4; in direction of g; intersects P in two
points by € ECT(P) and 2 € ECT(P)°, that together
with ¢; and ¢j4; are ordered as 2;-bx-g;41-g; along the
ray. These properties satisfied by the edges of @ give us
another characterization of the chains determined by the
support vertices of the common and separating tangents.
Therefore, we do not need to know a priori the support
vertices of @, for decomposing 8@ into ECT(Q)¢, Qa,
ISB(Q) and Q. Since we can compute the intersection
of a line with convex polygon P in O(logm) time, this
alternate characterization provides an O(nlogm) time
algorithm to compute the partition of ISB(P).

Let f(n,m) denote the function that counts the num-
ber of operations performed on steps 2,3, and 4 of algo-
rithm 2.

Lemma 3.3 f(n,m) € O(n + m) aend f(n,m) €
O(nlogm)

Therefore, we conclude with the following.

Theorem 3.1 Algorithm 2 finds a point x € P, such
that 6(z) is @ mazimum with respect to Q in either O(n+
m) or O(nlogm) time.

3.2 The Minimization Problem

We characterize the subset of points of the boundary of
P where the minimum value 6(z) can be attained. In
the following lemma, we establish that the points are
on ECT(P)°. Again, we define a partition of ECT(P)°
similar to the partition of of ISB(P) above. We intersect
the extentions of the edges of Q4 and @, with ECT(P)°.
Let R represent the partition of the chain ECT(P)°.

Lemma 3.4 Any point ¢ in P where the aperture angle
reaches the minimum value lies on a vertez of the chain
ECT(P)® or on a parition point of R.

The lemma suggests the following algorithm.

Algorithm 3: Minimum aperture angle

Input: A convex polygon @ with n vertices and a convex
polygon P that does not intersect Q.

Oulput: A point z in P such that the aperture angle
6(z), with respect to @, is minimum.

1. Find the partititon of ECT(P)¢ into chains
Ry, Ry, ..., R,.

2. For each Ry find the diagonal [gr¢;] in @ such that
for every point z € Ry, the aperture angle 8(z) with
respect to Q is given by Z(g,zq:).

3. For each chain Ry, find zx € Ry such that the aper-
ture angle 6(z)) is minimum over all points in Ry.
This is done by verifying all vertices of P on R; as
well as r; and 7g41.

4. Exit with the global minimum of all minima com-
puted in the previous step.

Since O(n + m) points are verified in order to find the
minimum, we conclude with the following.

Theorem 3.2 Algorithm 38 finds a point 2z in P, such
that 6(z) is a minimum with respect to Q in O(n + m)
time.

4 Lower Bounds

In this section, we show that the complexity of comput-
ing the minimum aperture angle of an m vertex convex
polygon P with respect to an n vertex convex polygon Q
has lower bound Q(max{m,n}) and computing the max-
imum aperture angle has lower bound Q(n). Our lower
bounds rely on the fact that the polygons are given in
the form of linear arrays, a very natural representation.

VD

4.

q;

Figure 4: Lower bound construction.

For the first construction we create two convex poly-
gons the vertices of which lie on the unit circle C centered
at the origin. For P we choose its vertices on the lower
semi-circle of C, whereas Q’s vertices are located in the
upper semi-circle (see Figure 4). These polygons have
the property that every edge of each of the two polygons
can be extended by an arbitrarily large distance with-
out intersecting the interior of any other edge in either
polygon. Therefore polygon @ has the appearance of a
line segment to a viewer in P. In particular, Q behaves
as if it were the edge [gn, q1]. Therefore, by Lemma 2.4,
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the minimum aperture angle must be realized by a ver-
tex of P. Furthermore, note that since P’s vertices are
on the circle C' and edge [gn, ¢1] is a chord of the same
circle, it follows that the aperture angle at each vertex
of P is equal. To finish the construction we take an ar-
bitrary vertex v of P and pull it outside the circle C but
by an amount small enough to preserve the convexity of
P. This arbitrary vertex will yield the smallest value
aperture angle. It follows that any algorithm that omits
even a single vertex in its search for the global minimum
could fail on this polygon. We have therefore proved the
following theorem.

Theorem 4.1 The complezily of computing minimum
aperture angle is Q(m).

We now show the construction that establishes the
2(n) lower bound for computing the maximum. In order
to do this, we construct a convex polygon @ such that
the function 6(z) has n identical maxima in P. In fact,
in our construction, for simplicity P will just be a line
L which can be converted into a convex polygon after
completion of the construction of Q.

We denote by ¢; = (a;, b;), (0 < i < n—1) the vertices
of @. The left chain @, contains only two vertices go
and g,—; and the right chain @, contains the vertices
q91,92,---,qn~-1-

We define a family of lines H with the property that if
aline N belongs to the family H, the intersection point of
N, and the line perpendicular to N through (0, 1), is on
the X-axis. This family is defined by H = {(z,y) | y =
az — a?; a € E?} and its envelope is a parabola given
by Ex = {(=,y) | y = «%/4}.

We now present the construction. Assume that the
line L coincides with the X-axis. Define the vertex ¢go =
(0,1). Let Tp = (1,0). To obtain the vertex ¢; consider
the line L(Tp) € H that passes through Tp and that
is perpendicular to the line L(go,7p). Then L(Tp) is
tangent to Ey at the point (2,1). Define ¢; = (2,1).
Let 71 = (2,0) be the orthogonal projection, on the X-
axis, of ¢;. In general, if T;_; = (2¢{ — 1,0) is a point
on the X-axis, there exists a line L(T;—;) € H that is
perpendicular to the line L(go,7;—1) and tangent to Eg
at ¢; = (2¢,2%-2). The set of vertices that form Q are
defined as [go, 91, .- .,qn-1], where go = (0,1) and ¢; =
(24,2%-2)fori=1,...,n— 1. Since [g0,41,---,qn-1] lie
on a parabola, Q is a convex polygon. Each T; = (2¢,0)
is a maximum over L. Therefore, Q has Q(n) identical
local maxima over the line L. Any one of these can be
slightly perturbed to be the global maximum.

Theorem 4.2 The complerity of computing the mazi-
mum aperture angle is Q(n).

A modification of the above construction yields a sit-
uation where that are (n) identical local minima over
the line L. Therefore, we conclude with the following.

Theorem 4.3 The complexity of computing the mini-
mum aperture angle is Q(max{m,n}).
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