Simple Algorithms for Orthogonal Upward Drawings of
Binary and Ternary Trees

Sung Kwon KIM*
Department of Computer Science
Kyungsung University
Pusan 608-736
Korea
kskQ@csd .kyungsung.ac.kr
fax: +82-51-628-6059

1 Introduction

A drawing of a tree T maps each vertex of T to
a distinct point in the plane and each edge (u, v)
of T to a chain of line segments with endpoints u
and v. A planar orthogonal upward grid drawing
of a tree is a drawing satisfying the following
conditions: '

o (Planar) No two edges intersect.

o (Orthogonal) Each constituent line segment
of an edge is either horizontal or vertical.

e (Upward) Each edge is vertically monotone;
so no vertex is allowed to locate above its
parent, though they may lie on the same
horizontal line.

e (Grid) Each vertex or bend has integer co-
ordinate.

Throughout the paper, all drawings are planar
orthogonal upward grid drawings unless other-
wise specified, so planar orthogonal upward grid
will be omitted hereafter.

We summarize our results:

1. For a binary tree with n vertices, one can
compute a drawing with O(n log log n) area,

*Supported in part by Korea Science and Engineering
Foundation, No. 94-1400-04-01-3.

-115 -

O(n/logn) bends and at most four bends
per edge. (see Section 2.) A drawing with
the same area and number of bends can also
be computed by the algorithm of [3], but an
edge may have O(logn) bends.

2. For a ternary tree with n vertices, one can
compute a drawing with area O(nlogn),
and this is optimal. (see Section 3.)

2 Drawings of binary trees
with four bends per edge

For a binary tree with n vertices, Garg,
Goodrich, and Tamassia [3] compute a drawing
with O(log n) width, O(n loglog n/ logn) height,
O(nloglogn) area, and O(n/logn) bends. In
this section we will present a simple drawing
algorithm with the same bounds. In both the
drawings of Garg, Goodrich, and Tamassia, and
our drawings, only O(n/ log n) edges have bends.
Difference is that in our drawings an edge has at
most four bends, while in their drawings an edge
may have O(logn) bends.

Our algorithm works in a similar way as the
one of Garg, Goodrich, and Tamassia [3]. Given
a binary tree T' with n vertices, we first par-
tition T into O(n/logn) partial trees,! each of

1A partial tree of T is a subgraph of T, and a sub-



Vo
N

size O(logn), by deleting O(n/logn) edges. The
partial trees are drawn as in [3], and their draw-
ings are vertically stacked. The deleted edges
are drawn around the stack of drawings.

For partitioning, Garg, Goodrich, and Tamas-
sia use separators of a binary tree T'. Find a sep-
arator of T' and remove it to partition T into two
partial trees. (An edge of T is called a separator
if its remova.l leaves two partlal trees, each hav-
ing at least 1n and at most n vertices.) Recur-
sively repeat this “find and remove separators”
procedure O(n/ logn) times until all the partial
trees of T" left have size ©(logn).

We use a different partitioning method, which
is a variation of the one used for parallel tree
contraction by Gazit, Miller, and Teng [4], [5,
section 3.3.5]. The partitioning method was first
used by Fujiwara et al. [2].

1. For each vertex v of T', compute size(v), the
number of descendants of v in T', and

2. delete the edge (v, parent(v)) if lii%(".ilj >

l“:;s:l], and nxe(v)J > lnl:;(:)J, where u
and w are the ch:fdren of v.

It is easy to see that this deletes O(n/logn)
edges and leaves O(n/logn) partial trees, each
of size O(logn). We call these partial trees frag-
ments. Each fragment has at most 2logn ver-
tices, and may have only one vertex. A fragment
is trivial if it has only one vertex.

A fragment tree FT of T is a tree whose

vertices are the fragments obtained above and

whose edges are the deleted edges. Then FT
is a binary tree. This is true because the least
common ancestor edge of any two deleted edges
is also deleted. So, each fragment F is associ-
ated with at most three deleted edges, one from
its parent fragment (if exists), and two to its
two child fragments (if exist). The root of F
is adjacent to the deleted edge from the parent
fragment of F. The vertices of F' that are adja-
cent to the deleted edges to its child fragments
are called the connection vertices. A trivial frag-
ment always has two child fragments (easy to

tree of T is a partial tree of T rooted at a vertex v and
including all descendants of v.

-116 -

prove this); so its only vertex is not only its root
but also its connection vertex. If a non-trivial
fragment has two child fragments, then it has
two distinct connection vertices.

Consider a binary tree T with m vertices.
A planar straight-line orthogonal upward grid
drawing of T with width O(m) and height
O(log m) can be constructed [1, 3]. In this draw-
ing, each edge is either a horizontal or a vertical
line segment. A binary tree T is left-heavy if for
each vertex v of T with left child u and right
child w, size(u) > size(w). A right-heavy bi-
nary tree is similarly defined. Assume that T is
left-heavy. If it is not, transform T into a left-
heavy tree. ‘

1. Traverse the vertices of T" in reverse pre-
order, i.e., visit the root, then its right sub-
tree and then its left subtree.

2. Initially, visit the root and set z(root) =
y(root) = 0, where z(v) and y(v) are the z-
and y-coordinates of vertex v, respectively,
in the output drawing.

3. Visit vertex v with parent u.

(a) If v is the right child of u, then set
z(v) = z(u) and y(v) = y(u) - 1.

(b) Otherwise, set z(v) = z(w) — 1 and
y(v) = y(u), where w is the vertex vis-
ited immediately before v

See Figure 1 for a left-heavy binary tree and
its output drawing by the above algorithm.

Let Ar be the drawing of T output by the
above algorithm. The root of T is at the upper-
right corner of Ar and has coordinate (0,0).
The z- and y-coordinates of the vertices in Ar
are non-positive. Each right edge (an edge be-
tween a vertex and its right child) is vertical and
of length one. Each left edge (an edge between
a vertex and its left child) is horizontal and of
length > 1.

A binary tree is almost lefi-heavy if all but
exactly one vertex satisfy left-heaviness, i.e., if
there exists exactly one vertex whose right sub-
tree is heavier than its left subtree. Note that



Ar for an almost left-heavy T still has width
O(m) and height O(logm).

An important property of At for a left-heavy
or almost left-heavy T is that every non-root
vertex of degree one or two is not obstructed.
That is, a downward ray from a non-root vertex
v of degree one or two in A7 does not intersect
Ar except at v. Since the connection vertices
of T are of degree one or two, they are not ob-
structed. Another important property of Ar is
that the non-root vertices of degree one or two
appear in Ar from right to left according to the
reverse preorder sequence of the vertices of T'.

Transform each fragment F of FT into a left-
heavy fragment, and obtain Afr for each (left-
heavy) fragment F'. Transform FT into a right-
heavy tree. (Right-heaviness here is in terms of
the number of fragments.) Consider a fragment
F with two child fragments F; and F,. Assume
that Fy (resp., F3) is the left (resp., right) child
fragment of F in (right-heavy) FT. Let c; be the
connection vertex of F' that is adjacent to F; for
i=12 Ife = cz (in this case F is trivial)
or c; is to the left of c; (by comparing their z-
coordinates), nothing is done. Otherwise, locate
the least common ancestor ¢ of ¢; and ¢; in F
and switch the children of ¢. Then F becomes
almost left-heavy for ¢ is the only vertex that
violates left-heaviness. In Ap for this almost
left-heavy F, ¢ is to the left of c;. So, we will
assume that in each Ap, the connection vertex

of F to its left child fragment is to the left of
the connection vertex to its right child fragment::

In Figure 2(b), a right-heavy fragment tree of
the fragment tree in Figure 2(a) is shown. Each
fragment F is drawn as its Ap.

Vertically stack the Ap’s one above the other,
sorted from top to bottom according to the pre-
order sequence of the fragments F' of (right-
heavy) FT. See Figure 3. The AF’s are right-
justified so that the roots of Ap’s lie on the same
vertical line. Note that the stack of Ap’s has
width O(logn) and height O(nloglogn/logn)
as each Ap has width O(logn) and height
O(loglogn), and there are O(n/logn) Ap’s
stacked vertically.

The deleted edges will be drawn between Ap’s

-117-

and on the right of the stack as in Figure 3.
Let k£ be the number of fragments in FT, i.e.,
the number of Ap’s in the stack. Then, k£ =
O(n/logn) and there are at most 2k deleted
edges. We will show that 2(k —1) extra horizon-
tal tracks (two per between every consecutive
Ap’s) and [logk] extra vertical tracks on the
right of the stack are sufficient to draw these 2k
deleted edges. Our final drawing will have width
O(logn)+ [logk] = O(logn)+ log(rzs) =
O(logn) and height O(n loglogn/logn) +2(k—
1) = O(nloglogn/logn) +0O(n/lognr) =
O(nloglogn/logn).

Note that a fragment is immediately above its
left child fragment in the stack as the fragments
are sorted according to their preorder sequence.
Figure 4 shows how the deleted edges from the
connection vertices of a fragment F to its left
and right child fragments L and R are drawn.

(a) F is a trivial fragment. Then, F has two
child fragments. Let v be the only vertex of
the fragment. Its left edge is drawn as a vertical
segment for the root of L is directly below v. For
the right edge (v, r), starting at v, go rightward
to vertical track i (¢ will be determined later), go
downward along track i to the horizontal track
just above R, go leftward along the track to the
point just above r and go downward to r.

(b) F is a non-trivial fragment and has two
child fragments. For the left edge (c;, £), starting
at connection vertex c;, go downward to the bot-
tom horizontal track (remember that there are
two extra horizontal tracks between two consec-
utive Ap’s), go rightward along the track to the
point just above £ to reach downward to £. For
the right edge (cz,r), starting at ¢z, go down-
ward to the top horizontal track, go rightward
to vertical track i, and the remaining part is the
same as the right edge in (a).

(c) F is a non-trivial fragment and has only
one child fragment. The child fragment is its
right child fragment. The drawing of this right
edge is similar to that of the left edge in (b).
If the connection vertex of F is at the lower-
right corner of Ap, then a vertical segment is
sufficient.

As mentioned before, there are [logk] extra



vertical tracks on the right of the stack, num-
bered 1,2, ..., [logk] from right to left. Con-
sider the right-heavy FT. Only right edges of
FT use extra vertical tracks. We will assign a
track number to each right edge of FT as fol-
lows:

1. Find the rightmost path P of F'T and assign
track 1 to each edge of P.

2. Removing the vertices and edges of P from
FT leaves several subtrees of FT. Find the
rightmost path of each of these subtrees and
assign track 2 to each edge of these right-
most paths.

3. Repeat this “find and remove rightmost
paths” procedure until all right edges are
removed.

Because FT is right-heavy and of size k, the
maximum integer assigned is at most [logk].
We say that a right edge of FT spans a Ar if
in the stack of Ap’s one endpoint of the edge
is above Ar and the other is below Ap. Since
the Ap’s in the stack are sorted according to the
preorder sequence of the fragments of FT, it is
easy to see that no two right edges spanning the
same AF are assigned the same track number.

In our drawings only O(n/logn) edges have
bends and each bended edge has at most four
bends, so the number of bends is O(n/logn).

3 Drawings of ternary trees
with optimal area

We will first show that there is a ternary tree
T(n) with n vertices which requires (nlogn)
area in any drawing. (See Figure 5.) T(n)
has a chain with n/4 vertices. Each vertex v
of the chain has left and right children, which
are leaves, and the middle child of v, except
the bottommost one, is the vertex just below
v in the chain. The middle subtree of the bot-
tommost vertex of the chain is a complete bi-
nary tree with n/4 vertices. In any drawing of

T(n), the complete binary tree requires Q(logn)

-118 -

width (as shown in [3]), and the chain and the
leaves attached to it require 2(n) height (easy to
prove this). Thus any drawing of T(n) requires
Q(nlogn) area.

An O(nlogn) area algorithm for drawing a
ternary tree T' with n vertices will be given.
(Our algorithm works in a similar way as the
one for order-preserving upward polyline draw-
ings of bounded-degree trees in [3].) Our draw-
ing is order-preserving, i.e., in our drawing the
left edge of a vertex of T is to the left of its
middle edge, which is in turn to the left of its
right edge. Let v be the root of T. Let T3,73,
and T3 be the left, middle, and right subtrees of
v, respectively. Recursively draw subtrees T; for
i = 1,2,3. Vertically stack the drawings of the
subtrees as in Figure 6 so that the subtree with
the most vertices is on the bottom and the other
two subtrees are in the order of their indices.
Place v on top of the stack of the drawings, and
draw the edges between v and its children in
order-preserving way. Figure 6(b), (c), and (d)
show how to draw the edges between v and its
children in the cases in which T3,T%, and T3,
respectively, have the most vertices among the
subtrees. In case v has less than three children,
a similar drawing can be done.

Let H(n) and W(n) be the height and width
of the drawing of a ternary tree with n vertices
output by the algorithm above. We have

H(n) < H(ny) + H(n2) + H(ns) + 6,

where n; is the number of vertices of T; for i =
1,2,3. At most six extra horizontal tracks are
needed to draw between v and its children in
Figure 6(b-d). Since H(1) = 1and ny+nz+n3 =
n—1, H(n) = 6(n).

Let n' = max{n;,n2,n3s} and n” be the sec-
ond largest in {n;,n3,n3}. Then,

W(n) < max{W(n'), W(n") + 3},

as at most three extra vertical tracks are needed
to draw the edges between v and its children
in Figure 6(b-d). Since n' < n—1 and n” <
%(ﬂ - 1)1

W(n) < max{W(n — 1), W((n — 1)/2) + 3}.



Since W(1) = 1, an easy induction proves
W(n) <logn+ 3 for alln > 1.

Note that our drawing algorithm for ternary
trees can be used to draw binary trees in
order-preserving way to match the lower bound
Q(nlogn) of the order-preserving drawing of bi-
nary trees [3].

References

[1] P. Crescenzi, G. Di Battista and A. Piperno,
A note on optimal area algorithms for up-
ward drawings of binary trees, Computa-
tional Geometry: Theory and Applications
2(1992) 187-200.

[2] A. Fujiwara, W. Chen, T. Masuzawa and N.
Tokura, A cost optimal parallel algorithm
for computing a balanced decomposition tree
of a binary tree, Technical Report of IEICE,
COMP93-19 (1993) 93-100 (in Japanese).

[3] A. Garg, M.T. Goodrich, and R. Tamas-
sia, Planar upward tree drawings with opti-
mal area, Manuscript, 1995. An extended ab-
stract “Area-efficient upward tree drawings”
appeared in Proc. 9th Symposium on Com-
putational Geometry, pp. 359-368, 1993.

[4] H. Gazit, G.L. Miller, and S-H Teng, Opti-
mal tree contraction in an EREW model, in
Concurrent Computations: Algorithms, Ar-
chitecture and Technology, eds. S K. Tewks-
bury, B.W. Dickinson, and S.C. Schwartz
(Plenum Press, New York, 1988), pp. 139-
156.

[5] M. Reid-Miller, G.L. Miller, and F. Mod-
ugno, List ranking and parallel tree contrac-
tion, in Synthesis of Parallel Algorithms, ed.
J.H. Reif (Morgan Kaufmann, San Mateo,
California, 1993) Chapter 3.

-119-

(s)

P

(v)

Figure 1:

Figure 2:



]

. []

i

Figure 3:

chain of
! n/4 vertices

Figure 5:

(O) ®) ) (4)

Figure 6:



