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ABSTRACT: Given a set of polygonal obstacles in the plane, the shortest watchman route problem
asks for a route from which each point in the exterior of the polygons is visible to some point along
the route. We present an O(n?) time algorithm for computing such a route for a pair of convex
polygons, where 7 is the total number of edges in the polygons.

1. Introduction »

Computing collision-free paths in the presence of obstacles is a well known problem in com-
putational geometry having applications in robotics and computer graphics. Visibility properties
and shortest path properties are related to each other. Visibility graphs have been used to com-
pute shortest paths in the presence of obstacles [LW79], and all pair shortest paths inside a simple
polygon have been used to compute visibility graphs. Collision-free paths having visibility prop-
erties have also been considered [CN91, CE*91, MW91]. The watchman route problem asks for a
route from a point s to itself such that each point in the given space is visible to some point along
the route [CN91]. An optimum watchman route is a watchman route of minimum length. The
optimum watchman route problem is known to be NP-hard for polygons with holes and can be
solved in linear time for simple orthogonal polygons [CN88]. An O(n*) algorithm for computing the
optimum watchman route for simple polygons is reported in [CN91]. The watchman route problem
in the exterior of a single polygon has been explored. When the polygon is monotone, convex, or
rectilinear a linear time algorithm for computing the optimum external watchman route is given
in [NG90] which also contains an O(n*) algorithm for the case of simple polygon. Recently, an
approximation algorithm for computing a watchman route inside an orthogonal polygon with holes
is reported in [MM95]; this algorithm computes a watchman route whose length is within O(logn)
of the minimum possible length and the time complexity of the algorithm is O(n?).

In this paper we consider the problem of computing the shortest watchman route in the presence
of a pair of convex polygons. This problem was first considered in [GL93] which contains an O(n?)
time algorithm to obtain the solution. We present an improved algorithm requiring O(n?) time.

2. Preliminaries

Consider convex polygons P and @ whose vertices in clockwise order are p;,py, ..., px and
41,92, ---, qr, Tespectively. Let n = k + r. A watchman route for P and @ is a closed path
lying outside of P and @ and such that each point in the exterior of P and @ is visible to some
point along the route. The optimum watchman route is a watchman route of shortest length. A
commpon supporting segment of P and @ is a segment that is tangent to both of them. There
are exactly four common supporting segments for a pair of convex polygons, two of which are
bridge segments and the other two are cross segments. Consider three consecutive vertices g;_q,
g, and gi41 of Q. The half-lines obtained by extending edges §;;¢;—1 and g;, Gi71 (With end points
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¢i+1 and ¢;_1) are called the legs of ¢;. The vertices of P and @ can be distinguished into four
categories: A vertex ¢; of @ is a type 1 (respectively, type 2) vertex if polygon P is completely
inside (respectively, outside) the cone formed by the legs of g;. If only one leg (respectively, both
legs) intersect P then it is a type 3 (respectively, type 4) vertex (Figure 1).

We distinguish four kinds of watchman routes (Figure 2): Watchman routes that wrap polygon
P (respectively, Q) are P-wrapping watchman routes (respectively, Q-wrapping watchman
routes). Similarly, watchman routes that wrap both P and Q (respectively, neither P nor Q)
are P-Q-Wrapping watchman routes (respectively, Non-wrapping watchman routes). In
[NG91] it is shown that the optimum watchman route for a single polygon must touch its boundary.
This property does not hold for a pair of polygons. The shortest P-Q-wrapping route is given by
the convex hull of P U Q. Given P and @, the convex hull of P and @ can be computed in O(n)
time by using the merge hull technique[PS85). Due to space limitation proofs and other details are
omitted from this extended abstract.

Lemma 1 The shortest P-Q-wrapping watchman route can be computed in O(n) time.

In the rest of the paper we show that the shortest P-wrapping and the shortest non-wrapping
watchman routes can be computed in O(n) and O(n?) time, respectively. This results in the
following theorem.

Theorem 1 The shortest watchman route for a pair of convez polygons can be computed in O(n?)
time.

3. P-Wrapping Watchman Routes

Lemma 2 The shortest P-Wrapping watchman route must touch the boundary of P at its right
most vertez p, [GL93].

Consider the wedge formed by the legs of vertex g;. The area obtained by removing the polygon
Q from the wedge is the trimmed wedge of ¢; (Figure 3). A route that connects the two legs of
a trimmed wedge internally is said to span that wedge.

Observation 1: Any route that encircles P and spans the trimmed wedge of a vertex of () is a
watchman route. If such a route spans the trimmed wedge of ¢; then it is a P-wrapping route
with respect to ¢;. :

A P-wrapping watchman route with respect to g; can span the trimmed wedge of ¢; in four
distinct ways as shown in Figure 4. This results in three types of P-wrapping routes: (i) a 0-leg
route (with respect to ¢;) extends to the outside of the trimmed wedge of ¢; from both legs, (ii) a
1-leg route extends to the outside from only one leg, and (iii) a 2-leg route does not extend to the
outside.

Observation 2: The shortest 0-leg P-wrapping watchman route is trivially given by the boundary
of P.

3.1 1-Leg P-Wrapping Watchman Routes

Observe that the shortest P-wrapping watchman route with respect to a type 2 or a type 3
vertex must be a 1-leg route. Intuitively, a 1-leg P-wrapping watchman route can be obtained by
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stretching the boundary route of P to meet the leg/legs of ¢; not intersected by P. The shortest
such route with respect to a given vertex ¢; can be found by constructing the images of P and Q
and computing the shortest path from a carefully selected object point to its image point.

Lemma 3 The shortest 1-leg P-wrapping watchman route with respect to a given type 2 or type 3
verter can be computed in O(n) time.

To find the shortest 1-leg P-wrapping route, we could apply Lemma 3 repeatedly to compute
1-leg watchman routes with respect to each type 1 and type 2 vertices of Q) and report the one
having the least length. This clearly takes O(n?) time. The following lemma establishes that the
time complexity can be reduced to O(n).

Lemma 4 The shortest 1-leg P-wrapping watchman route can be computed in O(n) time.

3.2 2-Leg P-Wrapping Watchman Routes

The shortest P-wrapping watchman route with respect to a type 1 vertex of @ must be a 2-leg
route and hence it reflects from both legs. Such a route can be determined by constructing images
of P and Q by treating both legs as mirrors and finding the shortest path between the rightmost
vertex of P and its second image. In general, the shortest 2-leg P-wrapping watchman route with
Tespect to a type 1 vertex reflects from the legs by performing at most four take-offs and at most
four landings on P and @ (shown by dark dots in Figure 5). We call these take-off and landing
points the contact points of the route with the polygons.

Lemma 5 The shortest 2-leg P-wrapping watchman route with respect to a type 1 vertex can be
computed in O(n) time.

To compute the shortest 2-leg P-wrapping watchman route naively, we could apply Lemma 5
repeatedly to all type 1 vertices of () and select the one having the minimum length, and this would
require O(n?) time. By a careful analysis of the change of contact points due to the change of leg
vertices, shortest 2-leg P-wrapping watchman routes can be computed in optimum time. A 2-leg
P-wrapping watchman route with respect to a given type 1 vertex can be determined by knowing
the contact points of the route with P and Q. If we advance the leg vertex clockwise from g¢; to
gi+1 then the contact points may advance. The key observation here is that if the leg vertex moves
in the clockwise direction (from g; to gi+1) and results in the movement of the contact points then
the contact points also move in the clockwise direction. We need to efficiently compute new contact
points as legs are advanced. Note that after a few advances some contact points may actually
disappear. The detail is omited and we state the result in the following lemma.

Lemma 6 The shortest 2-leg P-wrapping watchman route can be computed in O(n) time.

4. Non-Wrapping Watchman Routes

A route that spans the trimmed wedge of p; and g; without wrapping P or Q is a non-wrapping
watchman route. The shortest such route that spans the trimmed wedge of p; and g; is denoted
by U(pi,q;).- The legs through which U(p;, g;) reflects depends on the relative orientations of their
trimmed wedges. The relative orientations of trimmed wedges can be classified into eighteen distinct
cases.
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Lemma 7 U(p;,q;) can be computed in O(n) time.

To determine the shortest non-wrapping watchman route we could compute U(p, q)’s for all
combinations of p and ¢ and select the shortest one, and this would require O(n®) time. By using
the idea of advancing supporting segments (Lemma 6) the total computation time can be reduced
to O(n?).

Lemma 8 The shortest non-wrapping watchman route can be computed in O(n?) time.

5. Conclusion

Computing the shortest watchman routes in the presence of polygonal obstacles is intractable
[CN88]]. Recently, an approximation algorithm of time complexity O(n®) for computing the shortest
watchman routes when the polygons are restricted to be orthogonal has been reported [MM95]. This
clearly highlights the need for faster exact/approximation algorithms. We presented an O(n?) time
algorithm to compute the shortest watchman route in the presence of a pair of convex polygons.
The bottle-neck of the algorithm is the computation of non-wrapping routes and faster ways to
compute them will also reduce the overall complexity of the algorithm. It would be interesting to
extend our approach to compute the shortest watchman route in the presence of K convex polygons,
where K is a fixed constant.
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Figure 1: Four types of vertices
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(¢): Q-Wrapping Route

(d): Non-Wrapping Routes

Figure 2: Four Kinds of Watchman Routes
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(a): 0-leg Route (c): 2-leg Route

(b): 1-leg Routes

Figure 4: P-Wrapping Watchman Routes

(b): Advance o.f. Legs and Contact Points

Figure 5
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