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Abstract

In this paper we study several problems concerning the
guarding of a polygon or a z-monotone polygonal chain P
with n vertices from a set of points lying on it. Our re-
sults are: (1) An O(nlogn) time sequential algorithm for
computing the shortest guarding boundary chain of a poly-
gon P. (2) An O(nlogn) time sequential algorithm for
computing the smallest set of consecutive edges guarding a
polygon P. (8) Parallel algorithms for each of the two pre-
vious problems that run in O(log n) time using O(n) pro-
cessors in the CREW-PRAM computational model. (4)
A linear sequential algorithm for computing the smallest
left-guarding set of vertices of an z-monotone polygonal
chain P, (5) An optimal ©(nlog n) sequential algorithm
for computing the smallest guarding set of relays of an z-
monotone polygonal chain P. (6) Finally, we consider the
problem of placing, on a z-monotone polygonal chain P, a
minimum set of vertez guards which collectively cover the
entire surface and show that this problem ts NP-complete.
The previously best known sequential algorithms for prob-
lems (1) and (2) take O(n? log n) time.

1 Introduction

In this paper we study two types of guarding prob-
lems for simple polygons and monotone chains. To
motivate our first problem, suppose that we have a
broadcasting station s that must transmit a radio sig-
nal to all points on a monotone chain C that models
the skyline of a digital terrain. If a point p on the
chain C is not visible form s, no direct transmission
is possible from s to p. Therefore, we need to intro-
duce a set of relay stations that will rebroadcast this
signal originating in s until p is eventually reached;
refer to Figure 1. For technical reasons, including
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avoiding noise in the broadcasting created by multi-
ple coverage, all relay stations must broadcast only in
the direction opposite to the location of s. Thus, if a
relay station is placed to the left of s, it is allowed to
broadcast only to its left, whereas if it is located to
the right of s, it will broadcast only to its right. Our
first problem is then, that of determining the mini-
mum number of relay stations needed to cover all of
C when the position of s is given. A more interesting
variation of this problem is that of finding the optimal
location where a broadcast station has to be built on
C such that the number of relay stations needed to
cover C is minimized. We give ©(n) and ©(nlogn)
algorithms, respectively, to solve both problems.

We also study here the problem of finding the
shortest guarding boundary chain of a polygon P;
that is, the shortest boundary segment T of a polygon
P such that every point of P is visible from a point T'.
A closely related problem, that of finding the smallest
set of consecutive edges of a polygon that guard P, is
also considered. We give ©(nlogn) time algorithms
to solve both of these problems. Parallel algorithms
that solve this problems in O(logn) time using n pro-
cessors in the CREW-PRAM model are given in the
full version of the paper. Previous sequential algo-
rithms for these problems require O(n? log n) time [1].

The common feature to most of the results pre-
sented here is that they are solved using a similar
technique, that is: shoot rays from the vertices of
a polygon to create a set of pockets, define a corre-
sponding interval for each pocket and finally, from
the set of intervals, find the optimal solution to the
problem.

The covering problems we consider are motivated
by applications of the notion of visibility in polyhe-
dral terrains. These applications include the con-
figuration of line-of-sight transmission networks for
TV and radio broadcasting, cellular telephony, micro-
wave relays, and other telecommunication technolo-
gies [2, 6, 8]. Computing the smallest vertex set
(SVS) guarding a polyhedral terrain is known to be
NP-complete [5] as well as the SVS guarding a poly-
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gon [9]. However, applications of polyhedral terrains
like planning of micro-wave links, TV-broadcasting
relays and telecommunications relays require that
a communication path is established between two
points p; and p; of the terrain (two cities, two
satellite-antennas, etc). Consideration of the problem
in the vertical plane E' defined by the line joining the
two points p; and p, reduces the problem back to two
dimensions (because a skyline of the terrain is now
considered). In the full paper, we demonstrate that
finding the SVS covering an z-monotone polygonal
chain is NP-complete for general visibility. Thus, the
algorithms presented here provide efficient solutions
to those polynomial variants of covering problems in
the plane.

2 Optimizing Relays

In this section we solve the problem of finding the
minimum number of relay stations for our broad-
casting problem when the position of the station s
is fixed. We can divide this problem into two sym-
metric problems, covering the part of the chain that
is to the left of s, and covering the part that is to
the right. Now, the problem can be modeled as
follows. Let P = (v1,v2,...,vn) be a sequence of
points in the plane defining an z-monotone polyg-
onal chain; that is, the orthogonal projections of
v1,...,V, onto the z-axis are in the same order as
in the chain. We say that a point v is to the left of
a point u if the z-coordinate of v is smaller than the
z-coordinate of u (see Figure 1). In particular, in the
z-monotone chain P, v; is to the left of v;, for all
i< j(i,7€{1,...,n}). We say that a point v is un-
der the line defined by v;v;4; if the 2-line path VUiV
makes a right turn at v;y;. A point p = (z,y) is un-
der the polygonal chain P = (v, v2,...,vs) if there is
i €1,...,n—1 such that £ < z coordinate of vj4;;
z > z coordinate of v;, and p is under v;vi41. We
say that a point v to the left of a point u is left-
visible in the terrain defined by the polygonal chain
P = (v1,vs,...,vy) if the line vu never intersects the
set of points under the polygonal chain P.

A set of points G in the z-monotone chain P, such
that any point v on the chain is left-visible from at
least one point in G is called a left-cover of the chain.
We consider the problem of computing the smallest
left-cover of an z-monotone polygonal chain. Clearly,
the set of vertices {vs,vs,...,vn} is a left-cover of
size n— 1. Thus, the smallest cover has a finite set of
points. The points of a cover will be called guards.

Before we give an algorithm for computing a mini-
mum cover we present some properties of covers. Let

Figure 1: Points p and ¢ are to the left of s. Point
¢ is left-visible from s, but point p in not left-
visible from s. A guard at s left-covers the subchain
(1}2, v3, V4, Us, Vs, 3)‘

G be an minimum cover that has guards on edges of
the polygonal chain P. For each guard g in an edge
v;vi41, replace g with the left most vertex g’ that is
a right turn and is to the right of g (see Figure 2).
The new set of points N has the same cardinality
as G. It is not hard to see that the new set is also
a cover. The reader may verify that the portion of
P left-visible from g is contained in the portion of
P left-visible from ¢’. Thus, N will be a minimum
cover that consists of guards placed only at vertices
of the polygonal chain P that are right turns. Note
that, in any cover G = (g1, 92,...,9m), the guard g;
(i € {1,...,m—1}) is always left visible from a guard
g; with ¢ < j. Thus, guards form a link of visibility
from right to left. Let LV/(g;) be the set of points on
the polygonal chain left-visible from g;. Observe that,
for all minimum covers G = (g1,...,gm), the set of
points LV (g;) is not contained in the set LV (g;), for
all i < j. Otherwise, we could remove g; from G to
obtain a smaller cover.

We are now ready to present an overview of an al-
gorithm for computing the minimum left-cover. The
algorithm works incrementally, traversing the polyg-
onal chain from left to right, starting with v;. The
algorithm repeatedly finds the next vertex v; that isa

Tight turn, and places a guard g at v;. It analyzes all

previously placed guards. If there is a previous guard
g’ such that LV (g’) is contained in LV (g), then the
algorithm removes g’ from the set of guards. The al-
gorithm terminates when it reaches v, and in this last
step, vy, is added to the set of guards and also, pre-
vious guards that guard regions guarded by v, are
removed from the set of guards. We call this algo-
rithm the Army-Withdraw algorithm.

Theorem 2.1 The Army-Withdraw algorithm com-
putes a minimum lefi-cover of an z-monotone polyg-
onal chain.
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Figure 2: Guards in a minimal cover can be placed at vertices that are right turns.

Proof: Let G = (g1,92,...,9m) be a minimum left-
cover such that g; is a right turn of the polygonal
chain P, for i = 4,...,m— 1. Moreover, with out loss
of generality, we may assume that, for each g; there
is no right turn vertex v such that v is to the right of
gi and LV (g;) is contained in LV (v).

Clearly, the set computed by the Army Withdraw
algorithm is a left cover R = (ry,...,7rn), with
m’ > m. We now probe that m’ = m. We probe
this by contradiction. We assume that m’ > m, and
since Ty = gm = v,, there must be a t such that
r¢ # g¢. Let to be the first ¢ with this property. Since
ri, and g;, are right turn vertices on the polygonal
chain, we have two cases:

Case 1: The guard g, is to the left of r;,. Since gy,
is a right turn vertex, the Army Withdraw algorithm
must have placed a guard r’ at gy, at some stage (at
least to cover the edge of the polygonal chain with
right endpoint at g;,). Moreover, at a later stage, the
Army Withdraw algorithm must have found a right
turn vertex r to the right of + and such that LV (')
is contained in LV (r) (to remove r/, since r' is not
rt,). But this contradicts the choice of G, since this
implies that there is a right turn vertex to the right
of g;, that covers at least what g;, covers.
Case 2: The guard 7, is to the left of g;,. In this
case, the region LV (r;,) must be covered by two or
more guards of G (if LV (ry,) was covered by only
one guard g € G to the right of r;,, the Army With-
draw algorithm would have found g and removed r;,).
Thus, there must exists different points u and v in
LV(r:,) and guards g; and g; in G to the right of r;,
such that:

e point v is in LV (g;) and not in LV(g;), and

e point u is in LV (g;) and not in LV (g;).
Without loss of generality assume g; is to the left of
9;-
SJubcase 2a: Point v is to the left of u. In this case,
we have visibility rays as in Figure 3 (a), because
v € LV(g;) and u € LV (g;). This implies that the
polygonal chain is under the line segment vg; and un-

%j a ;’ ! ’
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Figure 3: Subcases for proof of correctness of Army
Withdraw algorithm.

der the line segment ug;. Therefore, v is left visible
from g;. This contradicts v ¢ LV (g;).

Subcase 2b: Point u is to the right of v. Since u
and v are in LV(ry,) we have visibility rays as in
Figure3 (b). But then, u € LV (g;), a contradiction.

This completes the proof. ]

We now show how to carry out the Army Withdraw
algorithm in O(n) time. The idea for a linear algo-
rithm starts by characterizing those guards ¢’ that
the Army Withdraw algorithm will remove at a later
step because it finds a right turn vertex g to the right
of ¢’ and such that LV (g) contains LV (¢’). We call
these guards removable guards. The algorithm will
preprocess the polygonal chain P to obtain the nec-
essary information, such that, in the left to right pass
over the polygonal chain P, the Army Withdraw al-
gorithm will identify removable guards in constant
time, thus the Army Withdraw algorithm will not
have to insert them just to remove them later. The
Army Withdraw algorithm reduces to a scan from left
to right that requires linear time.

First, note that a removable guard ¢’ is left visible
from the replacement g. This is the main observation
in the proof of the following proposition.

Proposition 2.2 Ifg’ at v; is a removable point, the
right most point that causes the removal of g’ is the
first point, from left to right, in the upper chain on
the convez hull of the set of points vi,vit1,...,Vn.
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Proof: Let g’ be a removable guard at v; and let ¢
be the right most point that covers LV (g’). A guard
at g must see g’. If the line segment g¢’g is not the
first edge of the upper chain of the convex hull of
{vi,...,vn}, then there is a vertex v; to the right of
g and that sees ¢g’. But, then is not hard to see that
LV (g') C LV (v;) which contradicts that g is the right
most point with this property. m]

We are now ready to present the main result of this
section.

Theorem 2.3 An optimum lefi-cover for an z-
monotone polygonal chain P = (vy,...,v,) can be
computed in O(n) time.

Proof: That any algorithm requires to examine all
vertices of the chain trivialy gives a lower bound of
Q(n) time. An O(n) time algorithm is now obtained
by an O(n) preprocessing step for the Army With-
draw algorithm. Before performing the left to right
scan of the Army Withdraw algorithm, perform a
right to left Graham scan [10] recording, for each
vertex v; (with ¢ = n,n —1,...,v;), the vertex v;
to the right of v; such that the line segment v;v; is
the first edge of the upper chain of the convex hull of
the set {vi,...,vn}. The vertex v; associated in this
way to a vertex v; will be called its remover. This
preprocessing will require linear time.

The Army Withdraw algorithm is performed next.
Each vertex v; that is a right turn of the polygonal
chain will be added to the set of guards only if the
remover of v; is above the line that includes the line
segment v;_1v;. This test can be performed in con-
stant time, thus the Army Withdraw scan requires
also linear time. u]

3 Locating the Broadcaster

In this section we solve the problem of finding the
optimal location for the broadcasting station s. We
model this problem as follows: given a polygonal
chain, we are required to find the position on the
polygonal chain of a broadcasting station such that
the polygonal chain is covered and the number of re-
lays is minimized. However, we have the restriction
that no relay can broadcast towards the station, since
this would create interferencing signals. ,

To solve this problem we first establish some prop-
erties of the solution. Again, let P = (v1,vs,...,vy)
be the sequence of points in the plane that defines
the z-monotone chain that represents the skyline of

the terrain. Let s be the point where the broad-
casting station minimizes the number of relays. If
we were given s, the relays can be computed in lin-
ear time by covering the chain v;,vs,...,s from the
left as in the previous section and covering the chain
$y...,Un-1,Vn from the right by a symmetric algo-
rithm. Thus, the problem reduces to finding s. Note
that if the station s is to the right of a vertex v;, and
the y-coordinate of v; is larger than the y-coordinate
of v;_1, then a relay will be forced at v; if the ray that
extends the edge v;_1v; does not intersect P; that is,
if v; is the highest point in P to the right of v;_; that
sees V1.

Moreover, if the ray that extends the edge v;_jv;
intersects P at a point u to the left of s, there is no
need for a relay at v; because the relay that covers
u also covers the edge v;_;v; and anything that v;
covers. If u is to the right of s, then v; will require a
relay.

Now we are ready for the description of out al-
gorithm. For each vertex v; = (zj,y) (with y-
coordinate larger than v;_) we associate an interval
in the real line. The interval associated with v; has
lower end point the z-coordinate of v; and upper end-
point the z-coordinate of u (the first intersection of
P with the extension of the edge v;_;v;), and +o0 if
this extension does not intersect P.

Note that the number I(s) of relays required to
the left of a point s in the z-monotone polygonal
chain P is the number of intervals that contain the
z-coordinate of s. Applying the argument symmet-
rically (reversing left for right), we can compute the
number r(s) of relays required to the right of a point
s in the z-monotone polygonal chain P. The sta-
tion that minimizes the total number of relays can be
placed in any vertex s such that I(s) + r(s) is mini-
mum.

We require O(nlogn) time to compute all the in-
tervals and to sort their endpoints as to compute I(s)
and r(s) for all vertices. All other steps require linear
time; thus, we have the following result.

Theorem 3.1 Finding the position of a broadcast-
ing station on a z-monotone polygonal chain with n
vertices representing the intersection of a polyhedral
terrain and a vertical plane, such that the chain is
covered, the relays are minimized and there is no in-
terference can be done in ©(nlogn).

Proof: The proof of the lower bound is based on
a reduction from integer sorting to the broadcasting
station placement problem. The details are left to
the full paper. ]
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4 Chains Guarding Polygons

The problems in Sections 2 and 3 are closely related
to visibility and stationary guarding. Essentially, the
algorithm in Section 3 for finding an optimal place-
ment for the broadcasting station s is based on the
following framework: (1) Perform ray-shooting to ob-
tain a set of “pockets” on the input polygonal chain,
(2) define an interval corresponding to each “pocket”,
(3) from the set of intervals, find an optimal solution
to the problem. We generalize the techniques of this
later algorithm to study two problems on the weakly
visibility of simple polygons. Let P be an n-vertex
simple polygon. For a point p and an object C in P,
p is said to be weakly visible from C if and only if
p is visible from some point on C (depending on p).
Polygon P is said to be weakly visible from C if and
only if every point p € P is weakly visible from C.

We consider the problem of computing the short-
est weakly visible chain of a simple polygon (called
it the SWVC problem) and the problem of comput-
ing a chain on the polygonal boundary that contains
the minimum number of consecutive edges and from
which the polygon is weakly visible, also called the
consecuitve edge guards (CEG) problem [1]. Assum-
ing that the exterior of polygon P is “opaque”, we
would like to find a chain C on the boundary of P
such that (i) P is weakly visible from C, and (ii) for
the SWCV, the length of C is the shortest among all
such chains on the boundary of P, while for CEG, the
number of edges in C is the smallest. Intuitively, if
P represents a house whose interior is that of a sim-
ple polygon, then C is the contiguous portion along
the walls of P by which a mobile guard has to patrol
back and forth in order to keep the inside of P com-
pletely under surveillance and satisfies a minimality
condition.

For these two problems, we provide sequential al-
gorithms that run in O(nlogn) time, and parallel
algorithm that run in O(logn) time using O(n) pro-
cessors in the CREW PRAM computational model.
Our sequential solutions to these problems improve
the previously best known sequential O(n?log n) time
algorithms [1].

Suppose polygon P is defined by a sequence of its
vertices (v, va,...,v,) in the counterclockwise order
along the boundary B(P) of P. A vertex v; of P is
said to be reflez if the path v;_;v;v;;1 makes a right
turn at v; (with the convention that v,4; = v; and
vg = vp). Our algorithms crucially rely on the notion
of polygon “pockets” which are defined with respect
to reflex vertices.

Definition 4.1 Let v; be a reflex vertez of P.” The

clockwise (resp., counterclockwise) pocket of v; is de-
fined as follows: Shoot a ray starting at v;_y (resp.,
vi+1) and passing v;, and let the ray hit B(P)—v;_1v;
(resp., B(P) — v;v;+1) at a point p; then the chain
along B(P) from v; clockwise (Tesp., counterclock-
wise) to p is called the clockwise (Tesp., counterclock-
wise) pocket of v; and is denoted by PK.(v;) (resp.,
PK(vi))

Proposition 4.1 Polygon P is weakly visible from a
chain C on its boundary if and only if C intersects
every pocket of P.

Proof: If the chain C does not intersect a pocket of
a vertex v; (say, its clockwise pocket PK.(v;)), then
C N PK.(v;) is empty and clearly the vertex v;_;
cannot be weakly visible from C. If C intersects ev-
ery pocket of P, then we show that every point of
P is weakly visible from C. This is proved by con-
tradiction, as follows. Suppose there is a point p in
P that is not weakly visible from C. Then for any
point ¢ on C, the shortest path from p to ¢ inside
P consists of at least two line segments. Let pp’ be
the first segment on the shortest p-to-g path inside
P, and assume that the shortest path makes a right
turn at p’ (the other case is proved similarly). Now
shoot a ray starting at p and passing p’, and let the
ray hit B(P)—pp’ at a point h. Then the segment p'h
partitions P into two subpolygons P; and P,, with p
€ P, and C C P;,. The fact that the shortest p-to-q
path makes a right turn at p’ implies that the chain
C' is completely contained in the interior of the chain
along B(P;) from p’ counterclockwise to h, and that
P’ is a reflex vertex of P. It is now easy to see that
the pocket PK.(p’) is completely contained in P; and
hence PK.(p") N C is empty, contradicting that C in-
tersects every pocket of P. ]

The two corollaries below follow immediately from
Proposition 4.1.

Corollary 4.2 The shortest weakly visible chain of
P maust intersect every pocket of P.

Corollary 4.3 For two distinct pockets PK' and
PK" of P, if PK" C PK', then PK' can be re-
moved from the set of pockets of P without affecting
the structure of the shortest weakly visible chain of P.

Proof: This is because any chain on B(P) intersect-
ing PK" must also intersect PK'. o

Based on the observations discussed above, we can
map the points on B(P) to points on a unit circle
Circle (a bijection function for such a mapping can
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be defined trivially). Hence, every pocket of P is
mapped to an arc on Circle. Because P has O(n)
pockets, there are O(n) corresponding arcs on Circle
to consider. Let A denote the set of arcs so obtained.
Hence the SWVC problem is reduced to the problem
of first eliminating the arcs in A that contain some
other arcs of A (Corollary 4.3) and then finding an
arc a* on Circle (a* is not necessarily in A) that
intersects all the remaining arcs of A and has the
shortest length.

Proposition 4.4 Both endpoints of an arc a* on
Circle that intersects all the arcs of A and has the
shortest length can be chosen to be endpoints of some
arcs in A.

Proof: If a* consists of only a single point, then we
can easily let a* coincide with an endpoint of an arc
in A. When a* has two distinct endpoints, if one end-
point of a* were not an endpoint of some arc in A,
then a* could have been made shorter, a contradic-
tion. (]

We are now ready to present the algorithm for find-
ing the shortest weakly visible chain of P.

(1) For every reflex vertex of P, compute its two
pockets. This can be done in O(nlogn) time by using
ray shooting algorithms in simple polygons [3, 4, 7].

(2) Map the set of pockets of P to a set A of arcs
on a unit circle Circle, and sort the endpoints of the
arcs in A. .

(3) Eliminate the arcs in A that contain some other
arcs in A. Let A’ be the set containing the remaining
arcs in A.

(4) Compute an arc a* on Circle that intersects all
the arcs in A’ and has the shortest length, based on
Proposition 4.4. Map a* back to B(P).

The correctness of the SWVC algorithm follows
from the observations given above. The time com-
plexity of the algorithm is O(nlogn) because Steps
(3) and (4) can be performed in O(n) time.

A parallel implementation of the sequential SWVC
algorithm takes O(logn) time using O(n) CREW
PRAM processors. The details of this parallel al-
gorithm are left to the full paper.

Our techniques can also be used to solve the related
problem of computing a chain on the polygon bound-
ary that contains the minimum number of edges and
from which the polygon is weakly visible (called the
consecutive edge guards problem [1]). Our sequen-
tial and parallel solutions to this problem have the
same complexity bounds as those for the SWVC prob-
lem, improving the previously best known sequential

O(n?logn) time algorithm for the consecutive edge
guards problem [1]. The details are left to the full

paper.
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