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Abstract

A convezr cover of a set S in d-dimensional eu-
clidean space is a finite collection of convex sets
whose union equals S. The convez k-cover prob-
lem is the problem of determining if a given set
admits a convex cover with at most k pieces. In
the plane, the convex k-cover problem can be
solved in linear time for each k < 3; its com-
plexity remains open for fixed values of k > 4,
and it is NP-hard when k is part of the input. In
this-paper, we show that the convex 2-cover prob-
lem for simple polyhedra in three dimensions can
be solved in O(nlogn) time, but that the con-
vex 3-cover problem is NP-hard for star-shaped
polyhedra in three or more dimensions.

1 Introduction

Let E¢ denote the d-dimensional euclidean space.
A point z of a subset S of E¥ is said to be visible
from a point y of S, or equivalently z sees y, if
the line segment Z7 is contained in S. Problems
related to visibility have been studied extensively
in computational geometry; they have practical
applications in several domains, such as graphics,
pattern recognition, robotics and motion plan-
ning, etc. One type of visibility problem that
has received a lot of attention is the II k-cover
problem:

Given a set S, a property II, and an integer k,
are there k sets with property II whose union
equals S7

The first covering problem for simple polygons
was posed in 1973 by Victor Klee: “What is the
minimum number of guards required to cover any
art gallery of n vertices?” An art gallery can
be modeled as a simple polygon, and each guard

as a star-shaped subset of the polygon (a poly-
gon P is star-shaped if it contains a point from
which every other point of P is visible; the set of
all such points is called the kernel of P and de-
noted by Kr(P)). The answer to this question,
first proved by Chvatal [Chv75], is that |n/3]
guards are always sufficient and sometimes nec-
essary. The question has become known as the
Art Gallery Problem, and the answer as the Art
Gallery Theorem. Since then, a large number of
variations on the art gallery problem have been
considered [O’R87, She92].

Unfortunately, in most cases finding minimum
size covers of simple polygons with polygons
that have property II is NP-hard. Culberson
and Reckhow [CR88], and independently Sher-
mer [She89], proved that this also holds when II
is the convexity property.

These negative results do not, however, pre-
clude the existence of polynomial time algorithms
for fixed values of k. In the case where II is the
convexity property, the convex l-cover problem
(determining whether a polygon is convex) can
be solved using a trivial linear time algorithm.
Shermer [She93] gave a linear time algorithm to
solve the convex 2-cover problem for simple poly-
gons, and Belleville [Bel95] gave a linear time al-
gorithm to solve the convex 3-cover problem. The
cases where k£ > 4 remain open.

These algorithms give insight into the com-
plexity of the convex cover problem, and help
us understand why this problem is difficult. This
knowledge will in turn allow us to design approx-
imation algorithms that are as efficient as pos-
sible. Since solutions to the convex cover prob-
lem with guaranteed error bounds are needed in
practice, it is thus highly desirable to study the
convex k-cover problem for small values of k.

In this paper, we consider the complexity of
the convex k-cover problem in higher dimensions,
for fixed values of k. The convex 2-cover prob-
lem is solvable in O(n logn) time in three dimen-
sions; this algorithm is described in Section 2.
On the other hand, the convex 3-cover problem
for star-shaped polyhedra in three (or higher) di-
mensional space is NP-hard; this is shown in Sec-
tion 3. Finally we present conclusions and future
research directions in Section 4.
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2 Convex 2-cover

In this section, we outline an O(nlogn) time
and O(n) space algorithm to solve the convex
2-cover problem in three dimensional euclidean
space. This algorithm proceeds by partitioning
the input polyhedron P, and then defining on
the components of this partition a graph G that
admits a proper 2-coloring if and only if P admits
a convex 2-cover.

First consider an arbitrary convex 2-cover C =
{C1,C>} of a simple polyhedron P. Let C] =
CH(C: U Kr(P)) and C3 = CH(C2 U Kr(P)).
Because every point of Kr(P) sees every other
point of P, the set {C},C5} is a convex 2-cover
of P such that C{NC3 = Kr(P). Hence it suffices
to decide whether P admits a convex 2-cover in
which the intersection of the two cover elements is
Kr(P). This can be done by determining how P\
Kr(P) is partitioned between the cover elements.
The following property simplifies this decision.

Property 2.1 Let P be a simple polyhedron,
and Q be a connected component of P\ Kr(P).
In every convez 2-cover of P, there is a cover el-
ement that contains Q, and no point of Q belongs
to the other cover element.

Let @ = {Q1,-..,Qm} be the set of connected
components of P\ Kr(P). It suffices to determine
which elements of Q belong to each cover ele-
ment. This can be done by constructing a graph
G whose vertices represent the elements of Q. An
edge joins two vertices of G if the corresponding
elements Q;, Q; of Q are not completely visible,
i.e. there is a point of Q; and a point of Q; that
do not see each other. We note that every two
points of a given element @; of Q@ must be visible,
but that Q; need not be convex (for instance, let
the polyhedron P be the planet Saturn, and Q;
be the rings of Saturn). We will call Q; pseudo-
convez if every two points of Q); are visible.

Property 2.2 If Q' is a subset of Q whose el-
ements are individually pseudo-convez and pair-
wise completely visible, then Kr(P)U(Ug;e'Q:)
is a conver subset of P.

Property 2.2 implies that every proper 2-
coloring of G yields a unique convex 2-cover of

P in which the intersection of the two cover ele-
ments is Kr(P), and that each convex 2-cover of
P with this property corresponds to exactly one
proper 2-coloring of G. The algorithm thus starts
by computing K7(P), and the set Q. It then
computes G from Q, and attempts to two-color
G. If G does not admit a proper 2-coloring, then
the algorithm aborts. Otherwise, it computes the
cover of P induced by a proper 2-coloring of G.

Let N.(z) denote the set of all points of E3
whose distance to a point z is less than or equal
toe. A point of local non-convezity of P is a point
z of bd(P) such that, for every ¢ > 0, there are
points y and z of P N N,(z) that are not visible.
To compute G, we use the following fact:

Property 2.3 If P admils a conver 2-cover,
and two connected components Q;, Q; of P\
Kr(P) are not completely visible, then there is
a point z of bd(P) such that for every ¢ > 0,
there is a point z; of Q; N N¢(z) that does not see
a point z; of Q; N N.(z).

Hence every pair of vertices of G joined by an
edge in G correspond to elements of Q that are
adjacent along an edge of P, or incident upon a
same vertex of P. Only O(n) edges join elements
of @ that share an edge of P, but there may be
Q(n?) edges that join elements of Q sharing a
vertex. We can however show that G has the
following property:

Property 2.4 Let G* be the subgraph of G in-
duced by the k vertices corresponding to k ele-
ments of Q with a common vertex of P. If P
admits a conver 2-cover, then k — 2 vertices of
G* are incident upon at most 4 edges of G* each.

Hence if P admits a convex 2-cover, then G
contains only O(n) edges. We can show how to
determine these edges in O(n) time. Hence, in-
stead of computing G, we obtain a graph G’ us-
ing this procedure and compute the cover of P
corresponding to G’. Finally we verify that each
cover element is convex. If G’ does not admit a
proper 2-coloring, or if the cover we obtain is not
a convex 2-cover of P, then it is because P does
not admit - a convex 2-cover. This implies that
the convex 2-cover problem in E2 can be solved
in O(nlogn) time.
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3 Convex 3-cover

In this section, we prove that the convex 3-cover
problem is NP-hard in three dimensions. The
formal specification of this problem as a decision
problem is the following.

3D convex 3-cover (3D3C)
Input: A simple polyhedron P in E3.

Output: Yes if P admits a convex 3-cover, no
otherwise.

The reduction will be done from boolean 3-
satisfiability (3SAT), which is formally defined
as follows.

3-satisfiability (3SAT)

Input: A set C of 3-element clauses over a set
U of boolean variables.

Output: Yes if C' admits a satisfying truth
assignment, no otherwise.

However, rather than directly reducing 3SAT
to 3D3C, we will go through an intermediate
problem, which we call Delaunay subgraph 3-
colorability (DS3C). The advantage of this two-
step process is that each reduction then becomes
reasonably intuitive. The remainder of this sec-
tion proceeds in three stages: in Section 3.1, we
define the terms used thereafter and formally
specify the problem DS3C. In Section 3.2, we
show that DS3C is NP-complete using a reduc-
tion from 3SAT. Finally, we reduce DS3C to
3D3C in Section 3.3.

3.1 Introduction

Given a set V of points in the plane, a triangula-
tion of V is a maximal set E of edges such that
(V,E) is a plane graph. We note that each face
of the triangulation except for the outer face is
a triangle. The Delaunay triangulation of V is
the triangulation of V in which every triangular
face Avv’v"’ has the property that the interior of
the circle through v, v' and v"” does not contain
any point of V. A plane graph G = (V, E) will
be called a Delaunay subgraph if E is a subset of
the Delaunay triangulation of V. DS3C can now
be formally defined as follows.

Delaunay subgraph 3-col. (DS3C)
Input: A Delaunay subgraph G.

Output: Yes if G admits a proper 3-coloring,
no otherwise.

We will also require some definitions related to
euclidean geometry in three or more dimensions.
A d-dimensional polyhedron can be defined re-
cursively in term of polyhedra of lower dimen-
sion. A zero-dimensional polyhedron is a point.
A one-dimensional polyhedron is a line segment.
For d > 2, a d-dimensional polyhedron P is a fi-
nite set F = {Fy,..., Fp} of (d — 1)-dimensional
polyhedra (called the facets of P) with the fol-
lowing property:

Every facet of an element of F is a facet
of exactly one other element of F. (*)
The polyhedron P is simply-connected if no strict
subset of F possesses property (*). P is simple if
it is simply-connected, if no pair of non-adjacent
facets shares a point, and if the intersection of ev-
ery pair of adjacent facets is their common sub-
facet. Simple polyhedra have well-defined inte-
rior and exterior.

Given a simple d-dimensional polyhedron P,
the visibility graph of a subset S of P is the graph
whose nodes correspond to the elements of S, and
in which two nodes are joined by an edge if and
only if the corresponding points are visible.

3.2 Reducing 3SAT to DS3C

The construction of the graph used in the in-
stance of DS3C uses several components taken
from various sources and illustrated in Figure 1.
From a functional point of view, subgraph Gopy
is used to copy the color of a vertex, subgraph
Gmerge merges the colors of two vertices, and
subgraph G.zcn exchanges the colors of two ver-
tices. G egchn Was suggested by Fischer and used by
Garey and Johnson to prove that planar graph 3-
colorability is NP-complete [GJ79]. Finally, sub-
graph Geiguse represents the clauses of the 3SAT
instance; it can be found in the book by Cormen
et al. [CLR89] (exercise 36-2). More formally
these components have the following properties:
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Figure 1: Illustrating the graphs Gcopy, Gmerge; Gezch and Giause-

1. In every proper 3-coloring x of Gcopy, We
have x(in) = x(out).

-2. Every proper 3-coloring x of Gmerge is
such that x(iny) = x(in2) = x(out).

3. Every proper 3-coloring x of Gegen is
such that x(iny) = x(out;) and x(ing) =
x(outy). Also, there are proper 3-color-
ings x1, X2 of Gezch such that x;(iny) =
x1(in2), and x2(iny) # x2(ing).

4. Suppose that x(var;) € {1,2} for i €
{1,2,3} and x*(bot;) # 1 for j € {1,2}.
We can extend x to a proper 3-coloring of
G ciause if and only if there is i € {1,2, 3}
such that x(var;) = 1.

The main idea for the construction was in-
spired from the construction described in exercise
36-2 of the book by Cormen et al. [CLR89] and
adapted to produce a subgraph of a Delaunay tri-
angulation. The construction proceeds in several
stages: a clause stage, a sorting stage, a merging
stage, and finally a variable stage. These stages
are illustrated in Figure 2.

During the clause stage, a vertex called true
is first placed at the origin. Next, one copy of
G ciause is produced for each clause in the instance
of 3SAT. These subgraphs are placed from left to
right in the order in which the clauses appear
in the description of the instance of 3SAT, and
edges are added from true to the vertices labeled

bot; and bot,. The vertices named var;, vare and
varg are labeled using the corresponding literal
in the instance of 3SAT.

The sorting stage orders the labels of the ver-
tices so that identical labels appear consecutively,
and so that literals corresponding to the same
variable also appear consecutively. In each step, a
literal is either copied using G copy, or exchanged
with a neighbor using G.zc». This stage mimics
the even-odd transposition parallel sorting algo-
rithm used for linear arrays of processors [Akl85].

The merging stage removes duplicates from the
list of literals. At each step, every sequence of
two or more vertices with the same label is com-
pressed by merging the two rightmost such ver-
tices using Gmerge. Once again, literals that do
not participate in a merge are copied using G copy.

The variable stage first places the vertices
called false and ignored. It then adds an edge
from each of these two new vertices to true, and
from false to ignored. Finally, it joins each la-
beled vertex obtained in the last step of the merg-
ing stage to ignored, and adds edges between ver-
tices whose labels complement each other.

The correctness of the transformation follows
straighforwardly from properties 1 to 4. No ver-
tex coordinate requires more than O(logn) bits,
and the graph has at most O(n?) vertices and
edges, and thus the transformation can be per-
formed in polynomial time. Finally, a rather
lengthy but simple case analysis shows that the
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Figure 2: The stages of the reduction from 3SAT
to DS3C.

graph thus generated is a subgraph of the Delau-
nay triangulation of its vertex set.

3.3 Reducing DS3C to 3D3C.

Let G* = (V*, E*) be the graph that appears in
the instance of DS3C, where V* = {v},...,v;}.
To reduce DS3C to 3D3C, we first construct a
convex polyhedron P whose vertices correspond
to the vertices of G*, and then removes pieces
called wedges from P to obtain a polyhedron P*
with the following property:

Property 3.1 Every reflez vertez of P* belongs
to ils kernel, and the visibility graph of the set of
convez vertices of P* is the complement of G*.

To construct P, we consider the inversion

function ¢ defined by ¢(z,y) = (z,y,2z2 + ¥?).
The polyhedron P will be the convex hull of
V = {v1,...,vn}, where v; = ¢(v}) for each i.
Because G* is a Delaunay subgraph, the follow-
ing property follows from an observation of Edels-
brunner [Ede88]:

1
the line segment T;v; is an edge of P.

Property 3.2 If (v},v}) is an edge of G*, then

Hence, to obtain a polyhedron P* that satisfies
property 3.1, it suffices to consider each pair of
vertices that correspond to an edge of G*, and

~
prvamdonmman
prenafuanonn

Figure 3: Two views of a cube from which a single
wedge has been removed.

to prevent them from seeing each other. Be-
cause property 3.2 holds, this can be done using
a wedge. A wedge is a small tetrahedron that has
one edge along an edge of P, and that is con-
tained in P. Figure 3 shows two different views
of a cube from which a single wedge has been
removed. The size of the wedge has been exag-
gerated for illustration purposes; real wedges will
be a lot shallower.

If each wedge is shallow enough, then prop-
erty 3.1 will be satisfied, and moreover no two
wedges will intersect. This implies that the poly-
hedron P* obtained by removing a wedge along
each edge of P that corresponds to an edge of G*
will be simple.

Given a convex 3-cover of the convex vertices
of P* (or a convex 3-cover of its edges, of its
boundary, or of P* itself), we can derive a proper
3-coloring of G* by coloring v} using one of the
cover elements that contains v;. Consider now
a proper 3-coloring x of G*. If each wedge is
shallow enough, we can partition P* as follows:

o the kernel of P* is one piece;

e every other piece is a polyhedron that con-
tains exactly one convex vertex of P*.

If Q is the piece containing the convex vertex v;
of P*, we can color @ using x(v}). For each i
in {1,2,3}, let Q; be the union of Kr(P*) with
the set of pieces colored i. Property 3.1 implies
that each @; is a convex subset of P*, and so
{Q1,Q2,Qs} is a convex 3-cover of P*.

In O(n?) time, we can compute a value € for
which the statement “if each wedge is shallow
enough” is equivalent to “if the depth of each
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wedge is at most €”. Furthermore, using that ¢,
each coordinate of a vertex of P* can be stored
in a number of bit bounded by a constant times
the maximum number of bits required by a co-
ordinate of a vertex of G*. Therefore the trans-
formation can be done in time polynomial in the
number of bits required to describe the instance
of DS3C.

4 Conclusions

We gave an O(nlogn) time and O(n) space al-
gorithm to solve the convex 2-cover problem for
simple polyhedra in three dimensions. We also
proved that the convex 3-cover problem becomes
NP-hard for simple polyhedra in three dimen-
sions. We can prove that the convex 3-cover
problem is NP-hard for d-dimensional polyhedra
when d > 4 by using the same reduction, and
extending P* into a cylinder along the remain-
ing d — 3 dimensions. This proof can then be
easily modified (by adding spikes to the poly-
hedron) to show that the convex k-cover prob-
lem for star-shaped polyhedra in E¢ is NP-hard
whenever d > 3 and k > 3.

One problem that remains open is that of ex-
tending the algorithm given in Section 2 to higher
dimensions. Properties 2.1, 2.2 and 2.3 remain
valid, and so a similar approach will work. How-
ever we do not yet know how to use this approach
efficiently in four or more dimensions. A sec-
ond open problem related to Section 2 is that of
improving the running time of the algorithm to
O(n). This would probably require a linear-time
algorithm that either finds Kr(P), or reports that
P does not admit a convex 2-cover.

Finally, the main practical reason for study-
ing the convex k-problem for small, fixed values
of k lies in the approximation algorithms that
may arise from the insights gained by such a
study. The results proved here, together with
Theorem 6.9 in the book by Garey and John-
son [GJ79], imply that no polynomial time ap-
proximation algorithm can provide a cover with
less than 4/3 times as many pieces as the opti-
mal cover. Finding any approximation algorithm
which produces a cover with o(n) time as many

pieces as the optimal cover remains open.
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