Evaluation of Collision Detection Methods for
Virtual Reality Fly-Throughs

Martin Held*

James T. Klosowskit

Joseph S.B. Mitchell?*

Department of Applied Mathematics and Statistics
State University of New York, Stony Brook, NY 11794-3600

1 Introduction

Real-time collision detection is one of the most important
problems that must be addressed in order to make Virtual
Reality (VR) a “reality”. Motivated by this need we address
the following problem: Given a description of a 3D geometric
environment, £, preprocess it into a data structure of small
size so that queries of the form, “Does object F intersect
any of the obstacles in £%” can be answered very rapidly.
Further, we study the problem of tracking the motion of F
within £, in order to detect dynamically, in real time, when
F collides with an obstacle. The environment £ is given to us
as a boundary representationof a set of polyhedral obstacles.
Our method for collision detection is motivated by re-
cent computational geometry results on “ray shooting” us-
ing meshes (triangulations) of low “stabbing number”!. In
computational geometry, several data structures have been
developed to support ray shooting queries: Determine the
first object hit by a ray that emanates from a query point
in a query direction. (An excellent reference on the subject
is [5].) From the practical point of view, however, the most
promising methods are based on the recent “pedestrian” ap-
proach to ray shooting: Build a subdivision (mesh) of low
stabbing number, so that query processing becomes simply
a walk through the subdivision [9, 13]. Then, the complex-
ity of a query is the number of cells (tetrahedra) of the mesh
that are met by the query ray before it hits an obstacle.
We have developed and implemented a collision detection
method whose preprocessing step is to construct a decom-
position of free space (the complement of the obstacles) into
tetrahedra, marking the (triangular) facets that correspond
to obstacle boundaries. For a given position of the object
F, we then determine those tetrahedra intersecting the (tri-
angular) facets of F, by using a simple search of the sub-
division. In this paper, we give details of our algorithm,
and we describe the experiments that we have conducted to

*held@ams.sunysb.edu; fax: (516) 632-8490. Supported by
NSF Grant DMS-9312098. On sabbatical leave from Universitat
Salzburg, Salzburg, Austria.

tjklosow@ams.sunysb.edu; fax: (516) 632-8490. Supported by
NSF grant CCR-9204585, and by a grant from Boeing Computer
Services.

{jsbm@ams.sunysb.edu; fax: (516) 632-8490. Partially sup-
ported by NSF grant CCR-9204585, and by a grant from Boeing
Computer Services.

1The (line) stabbing number of the mesh is the maximum num-
ber of cells met by any query ray before it encounters an obstacle.

-205 -

test the efficiency of this method. A primary goal of our
study was to determine if, indeed, the methods motivatad
by computational geometry have a practical impact on the
collision detection problem. We report on our implementa-
tions of other hierarchical collision detection methods, and
we compare results in a series of experiments.

Previous Work

Detecting intersections is of fundamental importance in com-
puter graphics, solid modeling, and virtual reality. Thus,
there have been many approaches to solving this problem,
including the use of binary space partition (BSP) trees [16],
“R-trees” and their variants [1], and octrees [14, 17].

One recent method for 3-dimensional intersection detec-
tion has been developed by Lin and Manocha [12, 4]. This
method is based on decomposing solids into a union of convex
polyhedra, constructing the Voronoi diagram of the space
surrounding each such convex piece (which is particularly
trivial), and then tracking the closest pairs of points between
all pairs of convex pieces. This method is highly effective as
long as there are not too many convex pieces involved; it
has the advantage of not relying on any of the objects re-
maining stationary. Other recent work includes [7] and the
thesis work of Hubbard [10, 11), who uses approximations of
objects (covering by disks) to speed up collision detection.

2 A Mesh-Based Algorithm
2.1 Collision Detection within a Mesh

Suppose we are given a tetrahedral mesh M that conforms?
to the obstacle environment, £, and a flying object, F, which
is a k-faceted® polyhedron. We want to determine for a query
instance of F, at a given position and orientation, whether
F intersects the environment.

Obviously, F does not intersect the environment if none
of its facet triangles intersects the environment, unless an
obstacle of the environment lies completely inside the flying
object, or vice versa. (We will deal with this problem later

2] .e., the boundary of the obstacle environment corresponds to
the union of some facets of the tetrahedra. Due to the fact that
M conforms to £, no tetrahedron of M can lie partially inside
and partially outside of some obstacle.

3Without loss of generality, assume that all facets of the flying
polyhedron are triangles.

in this section.) This simple observation can be refined into
a two-phase approach to static collision detection within a
mesh. In phase I we compute BB(F), the bounding box of
F, and enumerate all tetrahedra that lie partially inside the
bounding box*. Provided that one tetrahedron containing
one of the corners of BB(F') is known, these tetrahedra can
be determined by a straightforward (and computationally
inexpensive) breadth-first search of M. If none of the facets
of these tetrahedra is part of an obstacie boundary, then we
are done (no collision).

Otherwise, in phase II a full-resolution static collision
check is performed, checking each facet triangle of F' for col-
lision with any of the (hopefully few) obstacle faces deter-
mined in phase I. In theory, this all-pairs collision check be-
tween facets of F and selected obstacle faces could be avoided
by again making use of the mesh. However, up to now all
attempts to take additional advantage of the mesh structure
turned out to be not competitive with this limited all-pairs
check in practice.

This static collision check can easily be extended to a
pseudo-dynamic collision check. After each motion step the
vertices of F and of BB(F) are updated. Furthermore, the
new location of a corner of BB(F) within the mesh is ob-
tained by shooting a ray from its previous location, and the
algorithm outlined above is applied.

Note that a test® to see if F lies completely in the interior
of some obstacle (or vice versa) can easily be carried out.
Starting at the boundary of the environment, the mesh M is
scanned and all tetrahedra that lie inside some obstacle are
marked. Now, a test whether F lies completely in the interior
of some obstacle (or whether an obstacle lies completely in
the interior of F) boils down to checking whether any of
the tetrahedra (partially) occupied by F is marked. These
tetrahedra are enumerated already during the collision check,
and can thus be checked efficiently.

Implementation Issues The basic building blocks of
this algorithm are primitives for checking whether two tri-
angles (for the collision check), or a triangle and a line seg-
ment (for ray-shooting), intersect in 3D. These primitives
were carefully implemented and tested, cf. [8]. They rely on
floating point operations, where comparisons with respect to
zero are carried out by means of conventional e-based thresh-
olds. Extensive tests gave us confidence that these primitives
are reliable and efficient.

Small (numerical) errors may not matter when checking
for collisions. However, they do matter for ray-shooting! We
were surprised to learn how often a ray would hit an edge or
a vertex of a tetrahedron, or how often a point would lie on
the boundary of a tetrahedron rather than in its interior. In
both cases there is some danger of making inconsistent topo-
logical decisions due to numerical inaccuracy, which, in the
worst case, may result in a ‘looping’ of the code. These prob-
lems have been overcome by a careful implementation. For
instance, we always pass a list of vertices to our primitives
such that the vertices appear in sorted order (with respect to
their indices) in the list, which guarantees that the numerical

4For the sake of simplicity, our implementation enumerates the
(possibly larger) set of all tetrahedra whose bounding boxes over-
lap with BB(F).

5This subalgorithm has not yet been implemented, however.

results are independent of the processing order.

2.2 Mesh Generation

Our current implementation generates a conforming mesh
based on using a Delaunay triangulation of the obstacle ver-
tices, with Steiner points added in order to make the trian-
gulation conform to £. We start with the original vertices
of £ and compute their Delaunay triangulation. Afterwards,
we check whether any® triangular facet of £ is intersected
by a facet of some Delaunay tetrahedron. If no intersection
exists, then the mesh conforms.

Otherwise, for each obstacle triangle, up to one Steiner
point is chosen and the Delaunay triangulation is incremen-
tally updated. This scheme is applied repeatedly “until the
mesh conforms. Suitable Steiner points are obtained by tak-
ing the points of intersections of the edges of the obstacle
triangles with the facets of the tetrahedra, and vice versa.

Our approach is essentially similar to the concepts out-
lined by Sapidis and Perucchio [18]. The main difference
is that they try to minimize the number of points added by
cleverly selecting Steiner points which do not necessarily cor-
respond to points of intersection, thus possibly getting rid of
several intersections by adding only one Steiner point.

Clearly, the mesh we obtain is not necessarily of low stab-
bing number. (Bad examples exist.) Our goal in this pre-
liminary study was to obtain some conforming mesh, hope-
fully “nice” in some respect. We are developing now new
heuristics designed to give much lower stabbing numbers,
e.g., based on the recent methods of [13].

Implementation Issues We note that the robustness of
the mesh generation is a major issue. Since real-world mod-
els tend to have a lot of “degeneracies,” such as four or more
points being coplanar, an assumption of “general position”
is inappropriate. Thus, for robustness in the generation of
the Delaunay triangulation, we have adapted Miicke’s imple-
mentation, which is based on “simulation of simplicity” [6].

Apart from (artificially introduced) coplanarity, we mainly
struggled with robustness problems stemming from “bad
data”. Polyhedral models that are publically available on
ftp-servers on the Internet may be less than ideal topological
and geometric representations of “clean” polyhedra. Rather,
they tend to have various degrees of “nearly coplanar” ver-
tices, i.e., polygonal faces bounded by four or more vertices
where the vertices only approximately lie on the same plane.
Even worse, many models tend to have self-intersections, i.e.,
they contain (triangular) faces that intersect in places other
than at their boundaries. Unfortunately, such deficiences are
also common among models generated using popular CAD
systems.

Inconsistent topologies of polyhedral models constitute a
serious problem for our application — an intersection be-
tween an edge of one obstacle triangle and another obstacle
triangle necessarily yields a Steiner point at the point of in-
tersection. In particular, the scheme of 18] is not applicable
in the case of self-intersections.

60Of course, we do not compute all pairwise intersections be-
tween all facets of £ and all tetrahedra, but rather scan the mesh,
thus only checking the “neighborhood” of every obstacle triangle.

-206 -

3 Some Simple “Box” Methods

We implemented and tested our mesh-based algorithm, but
in order to determine its practicality, it is necessary to com-
pare it against alternatives. In this section, we describe three
alternative collision detection algorithms, which we imple-
mented for purposes of comparison.

3.1 A Grid of Boxes

Perhaps the simplest method that one can imagine for doing
“spatial indexing” is that of imposing a grid of equal-sized
boxes over the workspace (which is assumed to be the unit
cube). In our implementation of this method, we use an
N x N x N grid of boxes (cubes). (We ran experiments to
optimize over the choice of N.) For each box (“voxel”) in this
grid, we store a list of the obstacle triangles that int.rsect the
voxel. A single obstacle triangle may be stored in the lists
of many voxels; thus, the size of the resulting data structure
could be large in comparison with the size of the input. (This
issue was addressed in our experimentation.)

Processing a collision query is done by means of a two-
phase approach: In phase I, we compute the bounding box,
BB(F), of the flying object, and identify the set of vox-
els that intersect BB(F), simply by checking the z-, y-,
and z-ranges of BB(F). Then, we consider each obsta-
cle triangle, T, associated with each of these voxels. If
BB(T) N BB(F) = @, then we know that T does not in-
tersect F. If BB(T) N BB(F) # 0, then T is a witness of a
potential collision, and we perform a full-resolution check in
phase II: For each triangle T of the flying object, we identify
the voxels intersected by BB(T') and check T for intersection
with the associated obstacle triangles, stopping if we find an
intersection. During phase II we make use of the informa-
tion gathered in phase I; e.g., we do not check a triangle for
intersection with facets of F if its bounding box does not
intersect BB(F).

An alternative method, currently being implemented and
tested, is, for a given query F, to compute the set of voxels
intersected by F (e.g., by 3D scan-conversion), and to test
each obstacle triangle in the associated lists for intersection
with F.

3.2 A k-d Tree Method

Another approach to representing spatial data is to store it
in a 3-d tree, which is a binary space partition (BSP) tree
whose cuts are chosen orthogonal to the coordinate axes.

Each node of the tree is associated with a hyperrectangle
(box), and (implicitly) with the set of obstacle triangles that
intersect that box. (The root node is associated with the
workspace.) Each non-leaf node is also associated with a
“cut” plane. To define the children of a node, we must make
two decisions: (1) Will the cut be orthogonal to the z-, y-, or
z-axis? (2) At what value of the chosen coordinate axis will
the partition take place? If the number of obstacle triangles
intersecting a box falls below a threshold, K, then the box is
not partitioned, and the corresponding node is a leaf in the
tree. We explicitly store with each leaf the list of obstacle
triangles that intersect its box.

In our implementation, we make choice (2) by always split-
ting at the midpoint of the corresponding box length. One

-207 -

might consider the option of splitting at a “median” value
of the coordinate, but there is an issue of “median” with re-
spect to what discrete values? (Note that all of the obstacle
vertices for the associated triangles may fall outside the box.)

We make choice (1) in four different ways and choose” the
best one: (a) minimize max{n1,n2}; (b) minimize |n1 — n2|;
(c) minimize nin2; and (d) divide the longest side of the box.
Here, n; and n, are the numbers of the associated obstacle
triangles of the two new problems created at the children.

We also set a “no-gain-threshold”, to handle the instances
(e.g., near a high-degree vertex) in which splitting a node
does not decrease the number of obstacle triangles in one or
both of the two children. We do allow splitting to occur in
such cases, but only a bounded number of times (at most the
“no-gain-threshold”). We ran experiments to optimize over
the choice of this threshold, and we ended up using 5 in the
runs reported here.

Collision queries are again done in a 2-phase approach,
similar to the algorithm outlined above for the regular grid.

3.3

An alternative tree-based representation of obstacles is based
on the idea of “R-trees” and their variants [1]. We use a
binary tree version; multi-ary trees are also possible.

Each node of the tree corresponds to a rectangular box
and a subset of the obstacle triangles. The root is associated
with the workspace and all of the obstacles. Consider a set
T of obstacle triangles associated with a node. If |T| < K,
where K is some threshold (whose value was a parameter in
our experiments), the node is a leaf, and we store the trian-
gles T at this leaf. Otherwise, we split 7 in (roughly) half,
by using the median z-, y-, or z-coordinate of the centroids
of 7, and by assigning triangles to the two children nodes
according to how the centroids fall with respect to the me-
dian value. We select among the 3 choices of splits based on
either® minimizing (a) max{V;,V:2}, or (b) Vi + V2, where
Vi and V; are the volumes of the bounding boxes of the two
subsets that result from the choice of split.

Note that, at any one level of the tree, each obstacle trian-
gle is associated with only a single node. Collision queries are
again done in a 2-phase approach, similar to the algorithm
outlined above for the regular grid.

R-trees of Boxes

4 Experimental Analysis

4.1 Set-Up

Environments and Flying Objects: We recorded
flight statistics for three different groups of obstacle envi-
ronments called “tetras” (for “tetrahedra”), “scenes”, and
“terrains”. The first two groups were generated by means
of the random BSP-tree partition (described below), where
a random subset of the leaves were either filled with simple
objects (for the seven environments in the “scenes” group) or
with- tetrahedra (for the eight environments in the “tetras”
group). For the “tetras”, the numbers of tetrahedra ranged

"Results reported here used choice (c), which was selected after
running several comparisons.

8Results reported here minimized max{V;, V2}, which was se-
lected after running several comparisons.

from 25 to 4000. TFor the “scenes”, we used various test
objects®, such as chess pieces, mechanical parts, aircraft, and
models of animals. The number of triangles of the “scenes”
ranged from 1376 to 27600, with an average of about 20000
triangles.

The third group of environments (“terrains”) was obtained
from real elevation data. We sampled so-called “l-degree
DEM? data!®, thereby converting 1201 x 1201 elevation ar-
rays into 120 x 120 elevation arrays. These elevation ar-
rays were afterwards converted into triangulated surfaces by
means of a straightforward triangulation of the data points,
where each surface contains 28322 triangles.

These three groups of environments were tested with six
flying objects of various complexities. We used the follow-
ing polyhedral models (listed according to increasing order
of complexity): a tetrahedron, a soccer ball, a chess piece
(bishop), a balloon, and two aircraft (spitfire and 747-200M).
The numbers of triangles ranged from four (for the tetrahe-
dron) to 14643 (for the 747-200M). All environments were
scaled to fit into the unit cube, and all flying objects were
scaled to fit into a cube with side length 0.05.

Random Generation of Environments Ideally, for
purposes of experimentation, one would have an algorithm
to generate “random” instances of realistic obstacle environ-
ments. But, the problem of generating “random” collections
of obstacles is a challenging one; even the problem of gen-
erating a single “random” simple polygon on a given set of
vertices is open. Thus, for this set of experiments, our ap-
proach was to use a “random” BSP tree to partition the
workspace (the unit cube) into a set of disjoint boxes (the
leaves), into which we place scaled copies of various obsta-
cles. We generate the BSP tree as follows: At each of N —1
stages (where N is the desired number of leaf boxes), we
select at random a leaf (box) to split, from among a set of
“active” leaves (initially, just the single node consisting of
the workspace). Among those axes of the corresponding box
that are longer than 2¢ (for an € < (1/2)N~?/3), we select
one at random, and we split the box with a plane perpen-
dicular to the axis, at a point uniformly distributed between
Emin +¢€ and Emaz — €, where &min and Emaz are the min/max
box coordinates along the chosen axis. (The purpose of the
¢ here is to prevent “pancake-like” obstacles from being gen-
erated.) The leaf is removed from the active list, and two
new (children) leaves are created.

Flights: For our experiments, we implemented a form of
“billiard paths”: the flying object F is moved along a ran-
dom path, and it is allowed to “bounce off” an obstacle that
it hits. We do not attempt to simulate any real “bounce”;
rather, we simply reverse the trajectory when a collision oc-
curs. The motion of F is generated using a simple scheme of
randomly perturbing the previous motion parameters (dis-
placement vector and angles of rotation) to obtain the new
motion parameters.

9Most test objects have been obtained by means of anonymous
ftp from the ftp-site “avalon.chinalake.navy.mil” and converted
from various data formats to our input format.
10We obtained the DEM data by means of anonymous ftp from
the ftp-site “edcftp.cr.usgs.gov”.

As our algorithms heavily rely on the availability of the
bounding box of F, we also implemented a fast method of
updating BB(F) during the flight. In particular, with each
step, the new bounding box is obtained efficiently by a simple

hill-climbing algorithm applied to the (precomputed) convex
hull of F.

4.2 Results
4.2.1 Mesh Properties

Number of Steiner Points: The final number of ver-
tices (after inserting all Steiner points in order to achieve a
conforming mesh) seldom was more than twice the original
number of vertices. We also gathered data for the meshes
of some smaller objects which were known to have lots of
self-intersections and similar deficiences. As expected, some
of those objects needed many more Steiner points in order
to obtain a conforming mesh.

Number of Tetrahedra: It is well-known that the De-
launay triangulation of n points in 3D can consist of Q(n?)
tetrahedra. Fortunately, in our tests, we did not observe
quadratic growth; rather, we obtained an experimental lower
bound of 5.5n tetrahedra and an experimental upper bound
of 6.5n tetrahedra for a Delaunay triangulation of n vertices
of (sets of) real-world objects.

Stabbing Number of a Mesh: We also conducted a
series of experiments in order to determine the average (line)
stabbing number of our meshes. For each of 10K line seg-
ments (defined by pairs of random points inside the unit
cube) per environment, we computed the total number of
tetrahedra intersected by the segment (ignoring obstacles
that it crosses), normalized by dividing by the length of the
segment; the mean of these normalized counts was recorded
for each environment. There was no clear correlation be-
tween the experimental line stabbing numbers, on one hand,
and the numbers of vertices (resp., numbers of tetrahedra)
of the environments, on the other hand. Roughly, for meshes
consisting of 50K to 250K tetrahedra, the average stabbing
number was 55, with 30 being the minimum and 100 being
the maximum among our tests.

4.2.2 Collision Detection Experiments

In the sequel we describe the results of our collision detection
experiments. Note that the implementation (in the C pro-
gramming language) was not fine-tuned in order to achieve
optimal speed, and no optimizing compiler was used. How-
ever, the tests were fair because all four methods imple-
mented rely on the same basic primitives. Thus, a potential
speed-up gained by fine-tuning and optimizing can be ex-
pected to benefit all methods uniformly. All tests were run
on a Silicon Graphics Indigo 2, with 128MB of main memory.

Survey: For each method and each environment/object
pair, we determined “frame-rates” as follows. All four meth-
ods recorded statistics for a flight of the object along the
same billiard path within the same environment, for 10K
steps with an average displacement of the flying object by
about 0.005 between subsequent steps. Among other values,

-208 -

the elapsed cpu-time and the number of full-resolution col-
lision checks were recorded. Based on the elapsed cpu-time
and the number of steps, the average number of frames or
steps per second was computed.

Based on these frame-rates, we counted how many times
a method was the fastest!’ among the four methods; see
Table 1. Summarizing’?, the R-tree method was the clear
winner, with the mesh-based method taking second place,
and with the 3d-tree method as the clear loser.

(l Wins Per Method I

[env. name J] R-Tree | Grid | 3d-Tree | Mesh ||
terrains 45 2 4 1
tetras 3 8 7 34
scenes 25 11 7 9

|| total [73 [21 [18 | 44 |

Table 1: Number of wins for each method.

As the previous ranking only counts the number of wins,
it may not correctly highlight that method which performs
best “on the average”. Thus, we used a second method for
ranking, as follows. For each environment/object pair, we as-
signed a score to the four methods according to their sorted
frame-rates: the fastest (first) method scored 1, whereas the
slowest (fourth) method scored 4, and the other two meth-
ods scored 2 and 3. (Again, the scoring was adapted for
close ties.) After summing over all environment/object pairs,
the best method (in some hypothetical average case) is the
method with smallest total score; see Table 2. The R-tree
again took first place in this comparison, closely followed by
the grid-based method, with the 3d-tree taking third place,
and the mesh-based algorithm in fourth place.

l Scores 1l
env. name || R-Tree | Grid | 3d-Tree | Mesh ||
terrains || 53 122 116 176
tetras [[166 96 128 81
scenes I 75 90 108 | 130

[total [294 [308 [352 [387 |

Table 2: Weighted ranking for each method.

In order to determine the cpu-time consumed by one static
full-resolution collision check we ran another series of experi-
ments. For two environments from each of the three groups of
environments, and for all flying objects, we timed 20 different
full-resolution collision checks. The timings were obtained by
moving the flying objects along a billiard path, and by tim-
ing collision checks for placements of the flying object which
resulted in collisions. In order to get accurate timings, every
such collision check (for a particular placement of a flying ob-
ject) was performed repeatedly and the total cpu-time con-

111n case of close ties, several methods were counted as winners.

12Detailed charts have been omitted from this extended abstract
due to lack of space; a full paper with detailed charts can be
obtained from the authors.

sumed was measured and afterwards divided by the number
of collision checks performed. Averaging over all 20 different
placements yielded the average cpu-consumption of one full-
resolution®® collision check. Roughly, the ranking of our four
algorithms according to the number of full-resolution checks
confirmed the rankings given in Tables 1 and 2.

Mesh-Based Method: In our test it became evident
that the computational overhead carried by the mesh-based
method is too high to pay off for relatively simple flying ob-
jects. In all our tests the mesh-based method always was by
far the slowest when flying a tetrahedron (“tetra”). How-
ever, it became more competitive with more complex flying
objects; all the wins in the “scenes” group were achieved by
flights of the aircraft models (spitfire and 747-200M).

It also became apparent that, not surprisingly, a low stab-
bing number of a tetrahedral mesh for line segments does
not necessarily translate to a low stabbing number for a solid
(box). In order to improve the stabbing number for solids
flying within the meshes of the terrains we added a regular
grid of 10 x 10 x 10 Steiner points to the original vertices of
the terrains; the statistics presented are based on these im-
proved meshes. Roughly, improving the meshes in- this way
yielded a speed-up of about 20%.

We expect that adding a few Steiner points in judiciously
chosen positions — rather than simply adding a grid of points
- may improve the stabbing number for solids flying within
tetrahedral meshes significantly, and thus also speed-up the
collision detection process. This expectation is supported
by the fact that the mesh-based method took the first place
within the “tetras” group. (An advantage of this group is
that the environments did not suffer from self-intersections,
or other artifacts of “bad” data.) Furthermore, these envi-
ronments also yielded meshes that were visually pleasing and
of fairly low stabbing numbers for the bounding boxes of the
flying objects.

Box-Based Methods: The Tables 1 and 2 clearly show
that the R-tree method was the fastest for all three of our test
environments. A close examination of all our experimental
data, however, reveals that as the flying object increases in
size, all three of the box methods mostly tend to converge to
nearly the same frame-rate.

In optimizing the various parameters for these methods,
we chose N = 40 for the grid method, and a threshold K =
10 for the 3-d tree. The R-tree was given a threshold K = 1;
therefore, the number of triangles stored equals the number
of original triangles.

5 Extensions

(1) Dynamic collision detection: While our current imple-
mentation is psendo-dynamic, it is easy to approximate'* a
fully dynamic algorithm. Instead of checking at a discrete
set of placements of F for intersection with any obstacle,

130f course, every collision check included a bounding-box
pretest.

14Exact methods of treating dynamic collision detection have
been addressed by [2, 3], by considering the four-dimensional time-
space problem or by modeling the configuration space exactly.

-209-

we can do a linear interpolation for motion between discrete
placements. In particular, we can take the convex hull of two
consecutive (discrete) placements F; and Fi41 of F along its
(continuous) motion, and check this hull for intersection with
obstacles. Aslong as the spacing between placements is small
(i-e., we maintain a high frame-rate), this approximation to
computing a swept volume for F will be fairly good.

(2) Nested hierarchies: In our current implementation, we
use a two-phase approach to collision detection — first check-
ing for obstacle intersection with the bounding box of F, and
then, if necessary, checking for obstacle intersection with
each facet of F. Obviously, our method extends to nested
hierarchies of the flying object, where we compute a set of
nested approximations to F, Qo = F C Q1 C --- C Qx,
with, say, Qi being the bounding box of F, and each Q;
being a constant factor more complex than Qi4+:. Comput-
ing such a nesting is itself a challenging research problem;
but our collision detection methods easily apply to any such
nesting, and could, potentially, be substantially faster with
even a 3- or 4-level nesting.

(3) Multiple flying objects: Checking a flying object for in-
tersection with the environment yields, with little additional
computation, for each cell of our subdivision a list of tri-
angles of the flying object that (partially) occupy this cell.
(Subdivision cells are either tetrahedra, in the case of the
mesh method, or boxes, in the case of the other methods.) If
we maintain different lists for different flying objects then a
single pass through all cells with non-empty lists reveals all
potential collisions. In particular, two triangles of two differ-
ent flying objects need only be checked for collision if they
occupy the same cell. We expect this scheme to significantly
cut down the number of collision checks between triangles of
multiple flying objects.

6 Conclusions

We have proposed and implemented a simple new collision
detection method based on the principles of low stabbing
number meshes, a data structure devised for efficient ray-
shooting. We have compared our mesh-based method to
three other methods implemented by us. The results of
the experiments are mixed: In some cases, the mesh-based
method wins, while in other cases it loses to all three of the
others. These results suggest a few directions for continued
research: (1) Improved methods for taking additional advan-
tage of the information stored in the mesh, without spending
too much time on book-keeping operations needed for obtain-
ing this information; (2) Practical methods for generating
meshes of low stabbing number — clearly, our Delaunay-
based triangulation can be far from optimal; and, (3) Hy-
brid methods that can be engineered to take advantage of
the situations when one method is superior to another.

Acknowledgement

Jai Chakrapani implemented the first version of the mesh-
based algorithm. We thank Claudio Silva and Nikolai Zsikov
for valuable assistance in the project. We also thank Ernst
Miicke for supplying us with the source code for the Delau-
nay triangulation. Our work has greatly benefited from the

support of of the VR group at Boeing, including Jeff Heiser-
man, David Mizell, Henry Sowizral, and Karel Zikan.

References

[1] N.Beckmann, H-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: An efficient and robust access method for points and
rectangles. In Proc. ACM SIGMOD International Confer-
ence on Management of Data, pages 322-331, 1990.

[2] S. Cameron. Collision detection by four-dimensional inter-
section testing. JEEE Trans. on Robotics and Automation,
6(3):291-302, 1990.

[3] J. Canny. Collision detection for moving polyhedra. IEEE
Trans. Pattern Anal. Mach. Intell., PAMI-8(2):200-209,
1986.

[4] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi.
Exact collision detection for interactive environments. In
Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 391-
392, 1994.

[5] M. de Berg. Efficient algorithms for ray shooting and hid-
den surface removal. Ph.D. dissertation, Dept. Comput. Sci.,
Utrecht Univ., Utrecht, Netherlands, 1992.

[6] H. Edelsbrunner and E. P. Miicke. Simulation of simplic-
ity: a technique to cope with degenerate cases in geometric
algorithms. ACM Trans. Graph., 9:66-104, 1990.

[7] A. Garcia-Alonso, N. Serrano, and J. Flaquer. Solving the
collision detection problem. IEEE Computer Graphics and
Applications, 14:36-43, May 1994.

[8] M. Held. Reliable C code for computing triangle-triangle
intersections and triangle-segment intersections in 2D and
3D. Technical report, Applied Math, SUNY Stony Brook,
June 1994.

[9] J. Hershberger and S. Suri. A pedestrian approach to ray
shooting: Shoot a ray, take a walk. In Proc. 4th ACM-SIAM
Sympos. Discrete Algorithms, pages 54-63, 1993.

[10] P. M. Hubbard. Interactive collision detection. In Proc. IEEE
Symposium on Research Frontiers in Virtual Reality, pages
24-31, 1993.

[11] P. M. Hubbard. Space-time bounds for collision detec-
tion. Technical Report CS-93-04, Dept. of Computer Science,
Brown University, February 1993.

{12] M. Lin and D. Manocha. Efficient contact determination be-
tween geometric models. Internat. J. Comput. Geom. Appl.,
To appear.

[13] J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive
ray shooting. In Proc. 10th Annu. ACM Sympos. Compul.
Geom., pages 359-368, 1994.

[14] M. Moore and J. Willhelms. Collision detection and response
for computer animation. Comput. Graph., 22(4):289-298,
August 1988.

[15] D. M. Mount. Intersection detection and separators for sim-
ple polygons. In Proc. 8th Annu. ACM Sympos. Comput.
Geom., pages 303-311, 1992.

[16] B. Naylor, J. A. Amatodes, and W. Thibault. Merging
BSP trees yields polyhedral set operations. Comput. Graph.,
24(4):115-124, August 1990.

[17) H. Noborio, S. Fukuda, and S. Arimoto. Fast interfer-

ence check method using octree representation. Advanced
Robotics, 3(3):193-212, 1989.

(18] N. S. Sapidis and R. Perucchio. Domain Delaunay tetra-
hedrization of solid models. Internat. J. Comput. Geom.
Appl., 1(3):299-325, 1991.

-210-

