*

Voronoi Diagrams of Line Segments Made Easy
(Extended Abstract)

Christopher M. Gold* Peter R. Remmele™~
Faculté de Foresterie et de Géomatique Department of Computer Science
Université Laval Federal Institute of Technology
Québec, Canada Zurich, Switzerland

Thomas Roos™
Department of Computer Science
Federal Institute of Technology
Ziirich, Switzerland

Abstract

This paper presents a new method for constructing Voronoi diagrams of n disjoint
line segments. The basic idea is as follows. We construct a point Voronoi diagram
by selecting one of the two endpoints of each line segment. Then we incrementally
expand each endpoint to its corresponding line segment, continually maintaining the
Voronoi diagram using kinematic Voronoi diagram methods.

The technique is simple and easy to implement and runs in worst-case time
O((n + t) log n) using O(n) space, where t is the number of topological events that
appear during all expansions. Experimental results indicate that the number of
topological events is roughly linear in the number of line segments with an additive
sublinear factor depending on the maximal length of the line segments. In practice
our algorithm even shows a linear or slightly superlinear running time.

1 Introduction

The Voronoi diagram is a fundamental data structure appearing in many variants in the Compu-
tational Geometry literature (cf. [1] for a survey). The focus of this paper is the Voronoi diagram
of disjoint line segments in the Euclidean plane (cf. Figure 1), first investigated by Drysdale and
Lee [5], and Kirkpatrick [12]. Nearly all computing paradigms apply to the construction of Voro-
noi diagrams: there are randomized incremental algorithms [3], divide & conquer methods [16],
and sweepline techniques [6] which solve this problem in optimal O(n logn) time and O(n) space
where n is the number of line segments. A recent compilation of the experimental behavior of
these algorithms can be found in [4]; a numerically robust O(n?) implementation is given in [11].

This paper presents a new technique for constructing Voronoi diagrams of disjoint line segments
which is based on kinematic Voronoi diagram methods [2, 9, 13, 14]. We first construct a point

*The authors gratefully acknowledge the support by the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Association de I’Industrie Forestiére du Québec, and the Swiss National
Science Foundation (SNF) under grant 21-39328.93.

‘Address: Centre de recherche en géomatique, Pavillon Casault, Université Laval, Ste-Foy, Québec,

Canada G1K 7P4. Email: cgold@vm1.ulaval.ca
**Address: Dept. Informatik, ETH Zentrum, CH-8092 Ziirich, Switzerland. Fax: +41 1 632 1172.

Email: {remmele, roos}@inf.ethz.ch

-223-

Voronoi diagram by selecting one endpoint of each line segment. Then we maintain the Voronoi
diagram while expanding cach endpoint to its corresponding line segment. Since only one point
is expanding at a time. the topological changes of the line segment Voronoi diagram are basically
the same as those of Voronoi diagrams of one moving point [13]. After the expansion of all sites,
we obtain the Voronoi diagram of the given line segments. The presented technigue is not only
simple and efficient, but also easy to implement.

The paper is organized as follows. Section 2 describes the algorithm in more detail. Sec-
tion 3 discusses some experimental results obtained from an implementation. Finally, some open
problems and cxtensions of this technique can be found in the Conclusions.

Figure 1: A Voronoi diagram of line segments.

2 The Algorithm

Given a set of n disjoint line segments S = {s1,...,5,} in the Euclidean plane, the Vorono:
diagram V(S) partitions the plane into Voronoi regions such that all points within a Voronoi
region V, lie closer to the line segment s € S than to all other line segments in S — {s} (see
Figure 1). It is well-known that the complexity of the Voronoi diagram V(S) is O(n) [1]. Using
these elementary definitions, we are ready to describe the basic idea of our algorithm:

(1) We first select one endpoint e; of each line segment s; € S and construct the Voronoi
diagram V ({e1,...,en}) of these endpoints.

(2) In the second step, we expand each endpoint e; one at a time constructing the original line
segment s;. While doing this we maintain the Voronoi diagram with the help of kinematic

Voronoi diagram methods.

We can perform the first step using any of the existing O(n logn) algorithms for point Voronoi
diagrams. The second step can be thought of as expanding a rubber band which is first totally
contracted in point e; and then expanded to the line segment s; by dragging the other end (see
Figure 2 for an elementary expansion).

-224-

Figure 2: A Voronoi diagram during an expansion.

We can consider the (one-by-one) expansion of each line segment as the motion of one point
in a Voronoi diagram of points and already expanded line segments. This problem has been
thoroughly investigated (cf. [13]). Since only one line segment is expanding at a time, the
topological changes are basically the same as those of Voronoi diagrams of one moving point.

To understand the topological events, i.e. the changes of the topology of the Voronoi diagram
during an expansion, we consider the topological structure, i.e. the (extended) Delaunay graph.
It is well-known that topological events can be described as swaps [9] of adjacent triangles in
the topological structure. Each topological event can be treated in worst-case optimal O(logn)
time. In the average this reduces to O(1) time since the average number of Voronoi neighbors at
each instant of time is constant. In our setting the topological events are even simpler since the
expansion of a line segment creates only a certain type of topological event. This is, because the
expanding line segments only run into (but never out of) circumcircles corresponding to existing
Delaunay triangles. With that, we obtain the following theorem:

Theorem 1 A Voronot diagram of n disjoint line segments can be constructed in worst-case
time O((n + t)logn) and O(n) space where t is the number of topological events that happen
during the expansion of all line segments.

Our algorithm runs in worst-case optimal O(n logn) time if t € O(n). This is true for sufficiently
short line segments due to continuity arguments from the point situation. In fact, during all our
experiments we even observed a linear or slightly superlinear running time.

The robustness of the presented algorithm depends on the correctness of the topological struc-
ture over time. However, changes in this structure only take place during a topological event
caused by the expansion of a line segment. The topological swap itself is not numerically un-
stable, but the calculation of the precise instances of these events is crucial to the robustness
of the algorithm. This calculation can be performed by computing the zeros of the Incircle de-
terminant [10]. For a single moving point this gives us a quadratic equation to solve which is
defined by the Incircle determinant. Thus, we can achieve numerical robustness of the algorithm
by making these computations numerically stable. For that, we apply recent results by Sugihara
and Iri [15] that show how to improve the numerical robustness of this determinant.

-225-

3 Experimental Results

We have implemented our algorithm on the basis of the quad-edge data structure by Guibas
and Stolfi [10]. First we select one endpoint of each line segment at random and use a divide
& conquer technique for computing the Voronoi diagram of these endpoints in worst-case time
O(nlogn) and O(n) space. Then we incrementally expand the line segments according to the
lexicographical order of their selected endpoints. We use a balanced binary trec to maintain the
order of the topological events in worst-case time O(log n) per event. Each swap operation can
be performed in additional O(1) time.

We have implemented our algorithm in C on a Sun SPARCstation 20. For each problem
size, n = 100, 200, 500, 1000, ten random test inputs were generated (sec Figure 3 for a Voronoi
diagram of 500 line segments and points). These inputs were generated in two different ways.
Method A chooses for each line segmert a starting point and an endpoint uniformly distributed
over the unit square {(z,y) | 0 < z,y < 1} until the new line segment intersects with no other
line segment. Opposite to that, Method B first chooses a starting point uniformly distributed
over the unit square for each line segment. Then it randomly selects an endpoint from the unit
square until there is no intersection between the new line segment and any other already inserted

line segment.

The following tables show the ezperimental results. We measured the average running time
and the average number of processed swaps over ten randomly generated test inputs. The first
group of tables (Table 1A and 1B) lists the results over varying problem sizes and in the second
group of tables (Table 2A and 2B) we vary the maximal length of the generated line segments
for constant problem size. Each of the two groups consists of a Table A and a Table B according
to the method of input generation.

Table 1A and 1B both show a pairwise linear or slightly superlinear correlation between the
number of processed topological events (t) and the running time (time) with respect to the
number of line segments (n). This is due to the fact that topological events can be treated in
O(1) time in the average as noted earlier.

Table 1A Table 1B
n t time n t time
100 130 | 0.94 sec 100 128 | 0.93 sec
200 342 | 2.16 sec 200 360 | 2.13 sec
500 1080 | 5.87 sec 500 1121 | 5.75 sec
1000 2249 | 11.59 sec 1000 2275 | 11.22 sec

Tables 1A, 1B: Topological events and running time over varying problem size.

The number of topological events is also influenced by the length of the line segments. Table 2A
and 2B indicate a sublinear behavior of the number of topological events (t) and the running
time (time) with respect to the maximal length (maxl) of the line segments. The number of
line segments has been fixed to n = 100.

Table 2A Table 2B
maxl t time maxl t time
0.06 46 0.78 sec 0.06 51 0.79 sec
0.12 81 0.83 sec 0.12 96 0.85 sec
0.24 167 1.04 sec 0.24 175 1.07 sec
0.48 249 1.19 sec 0.48 248 1.15 sec

-226 -

Tables 2A, 2B: Topological events and running time over varying segment length.

Figure 3: A Voronoi diagram of 500 line segments and points.

Conclusions and Remarks

In this paper, we have presented a new technique for constructing Voronoi diagrams of line seg-
ments by combining Voronoi diagrams of points and kinematic Voronoi diagrams. Our algorithm
is not only simple and efficient, but also easy to implement and can be made numerically robust,
as it performs only local operations on the topological structure. One major advantage is the
absence of a point location structure which is inherent to all incremental algorithms. Another
advantage is the simplicity of the expansion step during which only simple topological events have
to be processed. Although the theoretical worst-case running time of our algorithm is O(n? log n)
(due to a quadratic bound on the number of topological events given in [13]), we are confident
that we will be able to improve the expected time in a randomized setting, when randomizing
over the sequence of expansions.

There are applications of this technique, e.g., in GIS (cf. {7, 8]). Our technique can easily
be extended to more general objects such as polygons and, with some care, even to general
subdivisions. Finally, we are confident that Voronoi diagrams of “complex” 3-dimensional objects
can be constructed in the near future, as the basic ingredients are already available [2].

-227-

References

[1] F. Aurenhammer, Vorono: diagrams: a survey of a fundamental geometric dala struclure.

ACM Comput. Surv., Vol. 23, pp 345-405. 1991

[2] G. Albers and T. Roos, Voronot diagrams of moving points in highcr dimensional spaces.
Proc. 3" Scandinavian Workshop on Algorithm Theory SWAT 92, Helsinki, Finland, LNCS
621, pp 399-409, 1992

[3] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of ran-
dom sampling lo on-line algorithms in computalional gecometry, Discrete & Computational
Geometry, Vol. 8, pp 51-71, 1992

[4] C. Burnikel, K. Mehlhorn, and S. Schirra, How to compulc thc Voronoi diagram of line
segments: theoretical and ezperimental results, Proc. 2"¢ Annual Europcan Symposium on
Algorithms ESA’94, LNCS 855, pp 227-239, 1994

[5] R.L.S. Drysdale and D.T. Lee, Generalized Vorono: diagrams in the plane, Proc. 16" Annual
Allerton Conf. Commun. Control Comput., pp 833-842, 1978

[6] S.J. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, Vol. 2, pp 153-174,
1987 '

[7] C.M. Gold, Spatial data structures: the extension from one to two dimensions, in: L.F. Pau
(Ed.), Mapping and spatial modelling for navigation, NATO ASI Series F, No. 65, Springer,
Berlin, pp 11-39, 1990

[8] C.M. Gold and T. Roos, Surface modelling with guaranteed consistency - an object-based
approach, in J. Nievergelt et al (Eds.): Proc. International Workshop on Advanced Research
in Geographic Information Systems 1GIS’94, LNCS 884, pp 70-87, 1994

[9] LJ. Guibas, J.S.B. Mitchell, and T. Roos, Voronoi diagrams of moving points in the
plane, Proc. 17** International Workshop on Graphtheoretic Concepts in Computer Science,
Fischbachau, Germany, LNCS 570, pp 113-125, 1991

{10] L.J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams, ACM Transactions on Graphics, Vol. 4, No. 2,
pp 74-123, 1985

[11] T. Imai and K. Sugihara, A failure-free algorithm for constructing Voronoi diagrams of
line segments, Transaction of the Information Processing Society of Japan, Vol. 35, No. 10,
pp 1966-1977, 1994

[12] D. Kirkpatrick, Efficient computation of continuous skeletons, Proc. 20'* Ann. IEEE Symp.
Foundations of Computer Science, pp 18-27, 1979

[13] T. Roos, Dynamic Voronot diagrams, PhD thesis, University of Wiirzburg, Germany, 1991

[14] T. Roos, Tighter bounds on Voronoi diagrams of moving points, 5'* Canadian Conference
on Computational Geometry CCCG’93, 1993

[15] K. Sugihara and M. Iri, Construction of the Voronoi diagram for one million generators in
single-precision arithmetic, Proceedings of the IEEE, Vol. 80, No. 9, pp 1471-1484, 1992

[16] C.K.Yap, An O(nlogn) algorithm for the Voronoi diagram of a set of simple curve segments,
Discrete & Computational Geometry, Vol. 2, pp 365-393, 1987

-228-

