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ABSTRACT

We show how persistence can be used to solve a number of geometric problems where prepro-
cessing is required to facilitate query answering. Efficient solutions for most of the problems
discussed already exist in the literature; however, persistence provides an efficient and con-
ceptually simpler alternative to existing solutions.

1 Introduction

Suppose we have a collection of geometric objects and are asked to report those satisfying a given property
with respect to a query object (not necessarily part of the collection). If many such queries are anticipated,
we want to preprocess the collection and build a data structure to enable us to answer queries efficiently.
The efficiency of such solution is then measured by three parameters: the preprocessing time, the space
required to store the data structure, and the time required to answer a query—with preprocessing time
generally considered unimportant. We refer to an algorithm with O(f(n)) storage requirement and
O(g(n) + k) query time, where k is the number of objects reported, as an (f(n), g(n))-algorithm.

In this paper, we show how persistence can be used to solve a number of query-type problems
in computational geometry: interval intersection, segment intersection, point enclosure, grounded 2D
search, orthogonal range search, and line of sight. Efficient solutions for most of these problems already
exist in the literature; persistence provides an efficient and conceptually simpler alternative to existing
solutions. The idea of building a persistent data structure to answer geometric queries is not new.
Sarnak and Tarjan [9] first showed how to use persistence to solve a geometric problem (planar point
location) for which existing solutions were all fairly complex; they used a persistent red-black tree to
provide an optimal (n,logn) solution. (For details on persistence and various methods of making data
structures persistent, the reader is referred to the comprehensive paper of Driscoll et al. [4].) What makes
persistence so well-suited for geometric problems is the prevalence of sweep methods in computational
geometry and the ease with which persistence can be used with most sweep methods.

2 Interval Intersection

Given a set, S, of n intervals {[a;,b1], [a2,b2],...,[an,bs]} On the real line, the interval intersection (or
interval overlap) problem is to report all the intervals in S that intersect a query interval [z,y]. (Two
intervals intersect if and only if they share at least one point.) Optimal (n,logn)-solutions include the
interval tree of Edelsbrunner [5], the priority search tree of McCreight [7], and the window-list of Chazelle
[3]. For the discrete version of the problem (i.e. when the endpoints of the query intervals are taken from
a range of O(n) integers), the window-list yields a (n, 1)-algorithm, until now the only optimal algorithm
known for the discrete version of the problem.

We describe a persistent data structure, which we call the interval list, that provides an efficient
alternative to the existing solutions; this structure is basically a partially persistent linked list.2 The

1This work is supported by the Office of Naval Research under contract N00014-92-C -2144.
2A partially persistent structure can be viewed as having a version for each point on the real line; in general, if version
numbers are drawn from a totally ordered set, the structure can be viewed as having a version for each element of the set.
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version corresponding to point x consists of the values with the largest version stamp not exceeding .
Given a set, S, of n intervals {[a1,b1], [a2,b2), .-, [@n,bs]}, we build the corresponding interval list, L,
so that version z of L consists of the intervals in S that contain point x. Thus versions z; through z3
consist of the intervals that intersect [z1,z2]. L is constructed by making a left-to-right sweep of the real
line. Before starting the sweep, we create an empty version of L, stamped —oo. As the sweep encounters
a point, z, marking the beginning of one or more intervals, we create a new version, z, by appending the
interval(s) onto L using version stamp z. As the sweep encounters a point, y, marking the end of one
or more intervals, we create a new version, y + ¢, by deleting the interval(s) from L using version stamp
y + €, where ¢ is small enough so that any point to the right of y does not fall to the left of y + €. If
the sweep encounters a point, z, that marks the beginning of one or more intervals as well as the end of
one or more (possibly different) intervals, we of course create version z before version z + €. The access
pointers (i.e. pointers to the heads of the different versions of L) are stored in an array, so that a binary
search can locate the access pointer to a given version.

Sorting the endpoints of the intervals in S takes O(nlogn) time. Constructing L requires making
n insertions and n deletions; each involving a constant number of update steps. Thus, using the node-
copying method, which has an amortized time cost of O(1) per update step, an insertion or deletion can
be performed at an amortized time cost of O(1) provided we have constant-time access to the tail of the
newest version of L (needed for insertion) and to an interval’s node in the newest version of L through
its right endpoint (needed for deletion). Thus the entire sequence of insertions and deletions takes O(n)
time, resulting in O(nlogn) preprocessing time. The node-copying method has an amortized space cost
of O(1), hence L requires O(n) storage.

To report the intervals containing point z, we simply retrieve version z of L. ThlS takes O(log n) time
to locate the access pointer plus O(k) time to report the intervals, where k is the number of intervals in
version z of L, resulting’in a total retrieval time of O(logn+k). To report the set of intervals intersecting
[z1,72], we note that if an interval intersects [z}, 2], then it either contains z; or its left endpoint is
contained in (z1,2]. Let S; be the set of intervals containing z; and S be the set of intervals whose left
endpoints are in (1, z2]. The intervals in S; are in version z; of L and can be reported in O(logn +|S5:|)
time. Sorting the left endpoints of the intervals in S and storing the resulting sequence in an array enables
us to report the intervals in S; in O(logn +|S2|) time. Thus queries can be answered in O(log n+ k) time.

For the discrete version of the problem, we can normalize the set of m query endpoints to integers
in the range [1,m] and create an array of access pointers with an entry for each query endpoint. Access
pointers can then be retrieved in constant time. If an array of left endpoints is used to answer queries,
this array too must be modified to allow constant-time access to its relevant entries. Queries can then
be answered in O(k) time.

3 Segment Intersection

Given a set, S, of n line segments in the plane, the segment intersection problem is to report the segments
in S that intersect a query segment ¢. Optimal (n,logn)-solutions for three restricted versions of the
problem have been given by Chazelle [3]. Here, we use persistence to obtain other optimal solutions.

First, we consider orthogonal segment intersection, i.e. when query and data set segments are mu-
tually orthogonal. Let S be a set of n segments in the plane, with the segments in S horizontal and the
" query segments vertical. We build a persistent data structure, T, such that version i of T consists of
the segments in S that intersect the line z = i. To support efficient search, T is built as a persistent
search tree. The segments in each version of T are ordered with respect to their y-coordinates. Let
(z,v1) and (z,y2) be the endpoints of a query segment g. Version z of L contains all the segments that
could possibly intersect g. The segments that actually intersect ¢ can be located by a range search on
this version, using y; and y. as the keys. The access pointers are stored in an array. The access pointer
to version z can then be located using a binary search, taking O(logn) time. The segments in version z
with y-coordinates in the range [y1,y2] can be reported in O(logn + k) time, where k is the number of
segments reported. Queries can thus be answered in O(logn + k) time.
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T is constructed by making a left-to-right sweep of the plane with a vertical line. As the sweep
line encounters the beginning (respectively the end) of one or more line segments at z-coordinate ¢z, the
segments are inserted into (respectively deleted from) T using version stamp ¢ (respectively i + ¢), where
¢ is small enough so that any point to the right of ¢ does not fall to the left of i+¢. Thus T is constructed
by making a total of n insertions and n deletions. Sorting the endpoints of the segments by z-coordinate
takes O(nlogn) time. An update operation in a balanced search tree of size n requires O(logn) time.
The node-copying method makes a linked structure persistent at a worst-case time cost of O(1) per
access step and an amortized time cost of O(1) per update step. Thus the entire sequence of insertions
and deletions can be performed in O(nlogn) time, resulting in O(nlogn) preprocessing. The storage
requirement depends on the number of update steps per insertion/deletion. By keeping the number of
update steps per insertion/deletion down to a constant (even in the amortized sense), we obtain O(n)
storage. This can be done with a red-black binary search tree, since insertions and deletions in these
trees require only O(1) pointer changes (see [8]); only recolorings may propagate for more than O(1)
stages, but, since we only update the newest version of the tree and since color fields are only used in
update operations, the color fields can be overwritten and thus do not require extra storage.

Next, we consider the problem where query segments have their supporting lines passing through
a fixed point p. In this case, we build a persistent search tree, T, by making an angular sweep of the
plane with a line passing through p. Since an angular sweep does not have a natural starting point,
the initial position of the sweep line is arbitrary. Version 0 of the search tree consists of the segments
that intersect the sweep line at its initial position. We then start rotating the sweep line 180 degrees.
As the sweep line, having rotated a degrees, encounters the beginning (respectively the end) of one or
more line segments, the segments are inserted into (respectively deleted from) T using version stamp
a (respectively a + €), where € is small enough so that any angle larger than « is at least as large as
a + €. The segments in each version of T are ordered with respect to the signed distance from p of their
intersection point with the sweep line. Assuming input segments can only intersect at their endpoints,
the relative order of segments does not change from one version to the next. The structure requires O(n)
space and O(n log n) preprocessing time. Let the angle between the initial position of the sweep line and
the supporting line of a query segment, g, be o degrees. To report the segments intersecting g, we search
version a of T, looking for segments that intersect the supporting line of ¢ between ¢’s endpoints. This
can be accomplished by a range search. Queries can thus be answered in O(logn + k) time, where k is
the number of segments reported.

Finally, we consider the problem where query segments have a fixed slope. In this case, we build a
persistent search tree, T, by making a sweep of the plane with a line that has the same slope as query
segments. Assume that query segments are parallel to the y-axis. Version 7 of the search tree consists
of the segments that intersect the line z = i. The segments are ordered by the y-coordinate of their
intersection point with this line. Again, note that the relative order of the segments does not change
from one version to the next if input segments only intersect at their endpoints. The structure requires
O(n) storage and O(nlogn) preprocessing time. Queries can be answered in O(logn + k) time, where k
is the number of segments reported.

4 Point Enclosure

Given a set, S, of n d-ranges in d-dimensional space, the d-dimensional point enclosure problem is
that of reporting the d-ranges (rectangular boxes parallel to the axes) of S that contain a query
point g. A number of solutions to the problem have appeared [3, 7, 10]. In particular, Chazelle [3]
proposed an optimal (n,logn)-algorithm for the 2-dimensional version of the problem which general-
izes to a (nlog?~2n,log? ! n)-algorithm in d(> 1) dimensions. Here, we use persistence to obtain
a simpler optimal solution for the 2-dimensional version of the problem, which also generalizes to a
(nlog®~%n,log?"! n)-solution in d(> 1) dimensions.

Given a set, S, of n intervals on the real line, the interval tree of Edelsbrunner [5] reports the intervals
in S that intersect a query interval [z, 2] in O(logn) time. The structure requires O(n) storage and
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O(nlogn) preprocessing time. A solution to the 2-dimensional point enclosure problem with the desired
space and time bounds could be obtained using a persistent interval tree, but this would be overkill: all
we need is a data structure that reports those intervals in S which contain a query point z. This is the
1-dimensional point enclosure problem and a special case of the interval intersection problem where the
query interval is a single point.

For a sequence of points (z;,z2,...,Z,) and a set of intervals S with endpoints from the sequence,
our simplified interval tree, T, is recursively defined as follows. The primary structure of T is a balanced
binary tree. The root, w, has a discriminant é(w) = (z|2) + Z|2)+1)/2 and points to two secondary
structures, L(w) and R(w). L(w) contains the sorted list (in ascending order) of the left endpoints of the
intervals in S containing §(w). R(w) contains the sorted list (in descending order) of the right endpoints
of the intervals in S containing §(w). The left subtree of w is the interval tree for the sequence of points
(z1,%2,...,7|3]) and the subset S, of S containing the intervals whose right endpoints are to the left of
6(w). The right subtree of w is defined analogously. The tree for a sequence containing a single point, z;,
is a single node with a discriminant equal to z;. To support efficient insertion and deletion of intervals,
the secondary structures are stored as threaded balanced search trees with two access pointers, one to
the root and the other to the smallest (largest) element in the list.

Insertion of an interval [b,e] consists of finding the highest node, v, of T such that b < §(v) < e,3
followed by the insertion of b into L(v) and e into R(v). To report the set of intervals containing point z,
we trace a path from the root to a leaf of T using z as the key—unless we encounter a vertex, v, along the
path such that §(v) = z, in which case the path terminates at v. If £ < §(v), we scan L(v) in ascending
order reporting every interval whose left endpoint is less than z, something we can do in O(k) time. If
z > §(v), we scan R(v) in descending order reporting every interval whose right endpoint is greater than
z. If £ = §(v), a scan of L(v) (or alternatively R(v)) in its entirety will produce the intervals containing
z as yet unreported. The structure requires O(n) storage and O(nlogn) preprocessing time. Queries
can be answered in O(logn + k) time.

The structure described is a linked structure with nodes of constant bounded in-degree. It can thus be
made persistent, using the node-copying method, at a worst-case time cost of O(1) per access step and an
amortized time and space cost of O(1) per update step. The 2-dimensional point enclosure problem can
be solved by building a persistent form of the structure as follows. Given a set, S, of n orthogonal objects
(i.e. rectangles with sides parallel to the axes) in 2-dimensional space, create an empty version, stamped
—00, of the structure and make a left to right sweep of the plane with a vertical line. As the sweep line en-
counters one or more rectangles at z-coordinate ¢, create a new version, 7, of the structure and insert the
y-intervals of the rectangles into the newly created version. As the sweep line encounters the end of one or
more rectangles at z-coordinate j, create a new version, j+¢, of the structure and delete the y-intervals of
the rectangles from the newly created version. The net effect is that version i of the structure contains the
y-intervals of the rectangles whose z-intervals contain point i. Given a query point (z,y), we simply search
version z of the structure and report the rectangles associated with the y-intervals in version x containing
point y. Implementing the secondary structures as red-black trees, the entire structure requires O(n) stor-
age and O(nlogn) preprocessing time. Queries can be answered in O(log n + k) time. The algorithm can
be generalized to an (n log?~? n,log? ! n)-algorithm in d dimensions using the segment tree of Bentley [2].

5 Grounded 2-Dimensional Range Searching

Given a set, S, of n points {(z1,¥1), (Z2,92),---,(Zn,¥n)} and a query triple (a,b,c) with a < b, the
problem is to report the set of points {(z:,¥:) : @ < z; < b and y; < c}. The priority search tree
of McCreight [7] yields an optimal (n,logn)-solution to this problem. Persistence, however, offers an
alternative to the priority search tree. We construct a persistent search tree, T, such that version 7 of
T contains every point (z;,y;) for which y; < 4, by making a bottom-to-top sweep of the plane with a

horizontal line. The points are stored in the tree using their z-coordinates as keys. Answering a query

3Note that equality holds only when v is a leaf, in which case the interval being inserted is a single point.
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given by the triple (a, b, ) consists of reporting all points in version c of T whose z-coordinates are in the
range [a,b]. Queries can thus be answered in O(logn + k) time. Since the construction of T involves n
insertions and no deletions, implementing it as a red-black tree (for example) takes O(n) storage. Thus
the solution is optimal. Unlike the priority search tree, this data structure is static—points cannot be
inserted into the structure or deleted from it; on the other hand, it can easily accommodate duplicate
z-coordinates, something the priority search tree cannot do.

6 Orthogonal Range Searching

Let S be a set of points in d-dimensional space. The d-dimensional orthogonal range searching problem
is that of reporting all the points in S that are contained in a query d-range R. Much attention has
been given to this problem. The range tree method (see [1]) yields a data structure that allows queries
to be answered in O(log?n + k) time using O(n log?~! n) space and preprocessing time. Willard [11]
and Lueker [6] devised a layering technique (also know as fractional cascading) to reduce the query
time to O(log®~* n + k) without affecting the storage requirement or preprocessing time. We show that
persistence can be used in orthogonal range searching to achieve the same effect as fractional cascading.

Note that the d-dimensional range tree is a linked data structure with nodes of constant bounded
in-degree, so that we can make the structure persistent at a worst-case time cost of O(1) per access
step and an amortized time and space cost of O(1) per update step by using the node-copying method.
We solve an instance of the d-dimensional range search problem by reducing it to two instances of the
persistent (d — 1)-dimensional problem. Let S be a set of n points in d-dimensional space. We construct
a complete binary tree, T, with n leaves. Each leaf of T is associated with a point, p, in S and has a key
equal to the first coordinate of p. The internal nodes of T are assigned keys consistent with the rules of
binary search trees. (Since we allow duplicates in T, the left or right subtree of a node, v, may contain
a key equal to that of v.) Let vz, and vg be the left and right children of node v respectively and P(v)
be the set of points associated with the leaves of the subtree rooted at v. With each internal node, v,
of T, we associate two persistent structures, D1 (v) and Dg(v), corresponding to the solutions of two
instances of the persistent (d — 1)-dimensional range search problem. Version i (respectively j) of D1(v)
(respectively Dgr(v)) contains those points in P(vL) (respectively P(vg)) whose first coordinates are in
the range [, key(v)] (respectively [key(v), j]). DL(v) is constructed starting with the highest version. In
retrieving version i of Dy (v), we follow the pointers with the least version number no less than i. Each
leaf, v, of T is also associated with two persistent structures. However, in this case one of the structures
is empty and the other contains the single point in P(v). We identify one of the structures as Dp(v)
and the other as Dg(v). Since each point in S can appear at most once at each level of T', the structure
requires O(nlog® ™! n) space and preprocessing time.

To report the set of points in a d-range R = [a1,b1] X [a2,b3] X - -+ x [ad,bs], we find the highest
node v of T whose key is in the range [a;,b;]. Version a, (respectively b;) of D1 (v) (respectively Dg(v))
contains the points whose first coordinates are in the range [a1, key(v)] (respectively [key(v), b1]). (Each
point with first coordinate equal to key(v) is either in version a; of Dy (v) or version by of Dr(v), but not
both.) We now search version a; (respectively b;) of Dy (v) (respectively Dr(v)) and report the points
in the (d — 1)-range [ag,b3] X - - X [a4,ba). The time required to answer a query is O(logn + T'), where
T is the time it takes to solve two instances of the persistent (d — 1)-dimensional range search problem.
Queries can thus be answered in O(log?~! n + k) time, where k is the number of points reported.

7 The Line-of-Sight Problem

Given a point, p, and a set of polyhedral objects, S, in d-dimensional space, the line-of-sight problem
is that of determining whether a query point, ¢, is visible from point p. We provide a solution for the
3-dimensional version of the problem where S is a collection of simple polygons in 3-dimensional space
by reducing the problem to one of planar point location and using the solution of Sarnak and Tarjan [9].
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Let each point, ¢, be represented by its polar coordinates with origin at p: a radius, r, which is the
length of the segment, s, connecting ¢ to the origin; an angle, 6, which is the angle between s and the
zz-plane; and an angle, ¢, which is the angle between s and the 2y-plane. We remove all surfaces hidden
from p and partition the remaining ones into convex pieces. (Hidden surface removal and partitioning
simple polygons into convex pieces are well understood problems in computational geometry.) Now we
(conceptually) project all visible convex pieces onto a half-sphere centered at p—effectively ignoring the
radius coordinate. Given a query point g, we begin by locating its projection onto the half-sphere; this
is essentially the same problem as planar point location, since the half-sphere is topologically equivalent
to a plane and is partitioned into convex regions. We use the optimal (n,logn) algorithm of Sarnak
and Tarjan with suitable modifications to take into account the circularity of the setting. Once we have
located the convex polygon P in which the projection of g sits, we decide in constant time whether q is
visible from p by checking whether ¢ is in front of P or behind it.

Since the number of visible convex pieces remains linear in the size of the input (the description of the
polyhedra forming the scene), we have solved the static line-of-sight problem with an optimal (n,logn)
algorithm based on a persistent red-black tree.

8 Conclusion

The use of persistence in computational geometry yields conceptually simple and often optimal static
solutions. Dynamic solutions, however, are beyond the scope of the persistent structures currently known.
Finding an effective way to allow update operations that change several versions simultaneously, would
result in efficient dynamic solutions; however, in several cases, these solutions would be so efficient as to
violate lower bounds for comparison-based methods—a possible indication of what remains doable with
persistent data structures.
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