Chromatic Nearest Neighbor Searching: A Query Sensitive
Approach

David M. Mount*

Abstract

The nearest neighbor problem is that of pre-
processing a set P of n data points in R? so
that, given any query point ¢, the closest point
in P to g can be determined efficiently. In
the chromatic nearest neighbor problem, each
point of P is assigned a color, and the problem
is to determine the color of the nearest point to
the query point. More generally, given £ > 1,
the problem is to determine the color occurring
most frequently among the k nearest neighbors.
The chromatic version of the nearest neighbor
problem is used in many applications in pat-
tern recognition and learning. In this paper we
present an algorithm for solving the chromatic
k nearest neighbor problem. Although in the
worst-case, our algorithm runs no faster than
the best nonchromatic version, we provide a
query sensilive analysis, which shows that if the
color classes form spatially well separated clus-
ters (as often happens in practice) then queries
can be answered more efficiently. We present

*Department of Computer Science and Institute for
Advanced Computer Studies, University of Maryland,
College Park, Maryland. The support of the National
Science Foundation under grant CCR-9310705 is grate-
fully acknowledged.

tCenter for Automation Research, University of
Maryland, College Park, and Space Data and Com-
puting Division, NASA Goddard Space Flight Center,
Greenbelt, Maryland. This research was carried out, in
part, while the author held a National Research Council
NASA Goddard Associateship.

{Department of Computer Science, University of the
District of Columbia, Washington, DC, and Center for
Automation Research, University of Maryland, College
Park, Maryland.

§Department of Computer Science and Information
Systems, The American University, Washington, DC.

Nathan S. Netanyahu!

Ruth Silverman* Angela Wu$

our results in the more general context of ap-
proximate nearest neighbor searching, in which
the user provides a relative error, ¢ > 0, and the
algorithm can answer the query with respect
to any k approximate nearest neighbors. We
present empirical evidence that for well clus-
tered data sets, this approach leads to signifi-
cant improvements in efficiency.

1 Introduction.

Let P denote a set of points in d-dimensional
space. Given a query point ¢ € R?, the nearest
neighbor to ¢ is the point of P that is closest to
¢ under any Minkowski distance metric. These
metrics include the well-known Euclidean dis-
tance, rectilinear or Manhattan distance, and
the max-norm. Computing nearest neighbors
in moderately high dimensional spaces is a flex-
ible and important geometric query problem
with numerous applications in areas such as
pattern recognition, learning, statistics, and
data compression.

In many of these applications, particularly
those arising from pattern recognition and
learning, the set P is partitioned into ¢ disjoint
subsets, {P;, Pa,..., P}, called color classes
(or patterns), and the problem is to determine
the index of the color class of the nearest neigh-
bor to ¢. No information need be given as to
which point in P realizes this color. More gen-
erally, to improve the robustness of classifica-
tion, for some k > 1, the problem is to deter-
mine which color occurs most frequently (i.e.
the mode) of the k nearest neighbors. The
chromatic k-nearest neighbor problem is that
of preprocessing the set P so that chromatic

-261-

nearest neighbor queries can be answered effi-
ciently. For the applications in mind, we can
take k and d to be fixed independent of n.

There are other ways to formulate such a
query [8, 9]. (For example, another formula-
tion is to compute the number of distinct col-
ors occurring among the k nearest neighbors).
Our choice is motivated from classification ap-
plications in pattern recognition, learning, and
image processing.

In this paper we consider more generally
an approximate version of the chromatic near-
est neighbor and k-nearest neighbor problems.
Given a user supplied parameter, ¢ > 0, a
(1 + €)-nearest neighbor of a query point ¢ is
defined to be a p € S, such that, if p* is the
closest point in P to g, then

dis{(q, p)
—_— < .
dist(q,p*) ~ e

In other words, p is within relative error € of
being a nearest neighbor of . We say that color
class i is a (1+¢)-chromatic nearest neighbor of
q if there is a point of color 7 that is a (1 + €)-
nearest neighbor of g.

For the generalization to k approximate
nearest neighbors, define a sequence of k ap-
prozimale nearest neighbors to be any sequence
of k distinct points from P, (p1,p2,...,Pk),
such that for 1 < i < k, p; is within a rela-
tive error ¢ from the true i-th nearest neigh-
bor of q. Clearly, there may be many different
approximate nearest neighbor sequences for a
given query point. The approximate version of
the chromatic k-nearest neighbors problem is
that of determining the color occurring most
frequently among any sequence of k approx-
imate nearest neighbors. Throughout we as-
sume that the parameters ¢ and k are supplied
as a part of the query, and are not known at
the time of preprocessing.

The well known standard (nonchromatic)
nearest neighbor problem can be thought of as
a special case of the chromatic problem, where
every point has its own color. Algorithms
and data structures for the standard nearest
neighbor problem have been extensively stud-
ied [5, 6, 11]. For existing approaches, as
the dimension grows, the complexity of answer-
ing exact nearest neighbor queries increases
rapidly, either in query time or in the space

of the data structure used to answer queries.
However, Arya et al. [3] showed that approz:-
mate nearest neighbor queries can be answered
quite efficiently. They established that after
O(nlogn) preprocessing, a data structure of
size O(n) can be built, such that nearest neigh-
bor queries can be answered in O(logn) time.
Constant factors in query time are on the or-
der of (a/€)?, for some constant a, and constant
factors in space are on the order of d. Recently,
Clarkson [7] has presented an alternative ap-
proach in which the constant factors show a

lower dependence on the dimension.)

In this paper we present an approach for the
approximate chromatic nearest neighbor prob-
lem which is sensitive to clustering in data sets.
We analyze its performance not from a worst-
case perspective, but from a query sensitive
perspective. A query sensitive analysis is one
which describes the running time of an algo-
rithm as a function not only of input size, but
of a set of one or more parameters, which are
intrinsic to the geometry of the query. In gen-
eral, these parameters should capture, in a rela-
tively intuitive way, the underlying complexity
of answering queries. Ideally, such an analysis
should show the algorithm takes advantage of
simplifying factors to improve running times.

For the chromatic k nearest neighbor prob-
lem we introduce the following geometric pa-
rameters. These quantities are based on the
assumption that points have been scaled to lie
within a unit hypercube. Let r; denote the dis-
tance from the query point ¢ to its k-th near-
est neighbor. Let r, denote the largest radius
such that the mode color among the k nearest
neighbors is determined purely from the cardi-
nalities of colors appearing within this distance
of q. For example, r; is the radius of the largest
monochromatic ball centered at ¢. For general
k and r > 0, let M(r) = (mi(r),...,me(r))
denote the nonincreasing sequence of color car-
dinalities among the points in in a ball of radius
r centered at g. (Thus, m;(r) is the number of
times the most frequent color occurs up to dis-
tance r.) Among the k nearest neighbors at
least k—3_,, mi(r) are of the most frequently -
occurring color. This color will be the mode if
this quantity is at least as large as the cardi-
nality of the second most frequent color. Thus,

-262 -

define r, be the largest » > r; such that

k— Zmi(r) > ma(r).

i>1

Note that r, > ri, since for r = ri the left
hand side of this inequality is equal to m;(r),
which is at least as large as ma(r). Also ob-
serve that when k = 1, the above inequality is
satisfied if and only if the ball of radius ry is
monochromatic, and hence this generalizes the
definition for single nearest neighbor case.

Based on these values, we introduce the fol-
lowing parameters upon which our analysis is
based. (The titles associated with these param-
eters are intended to be descriptive rather than
definitions.)

Cluster size: is defined to be ry. Since the
diameter of the point set is fixed, the
larger the cluster of points containing g,
the larger we expect r, to be. Intuitively,
if ¢ lies within the middle of a large cluster
of points of the same color, then it should
be easier to determine the color the near-
est point to ¢.

Local density: Let § = (ry — 7¢)/ri. Clearly
§ > 0. This parameter plays a role similar
to € by bounding the precision with which
the query needs to be answered.

We believe that these parameters intuitively
capture the strength of the clustering near
the query point (as these parameters become
larger, query processing should become easier).
Indeed, we show that after O(nlogn) prepro-
cessing and with O(n) space, chromatic ap-
proximate nearest neighbor queries can be an-
swered in time

- 1
o (mm (log"’ log m)) ’

with constant factors growing roughly as
O(ke(v/d/ max(6,€))?). Observe that the
worst-case running time is as good as the
nonchromatic algorithm by Arya, et al. [3] (for
k = 1), but if é is large, then the running time
may be much better. When 6 > ¢, the running
time is independent of ¢, and the algorithm will
return the correct color in this case. The con-
stant factors in space and preprocessing time

are O(cd). The fact that exponential constant
factors do not appear in the space complexity
is an important practical consideration for ap-
plications in higher dimensions.

2 Search Algorithm.

Recall that the problem is that of determining
the color occurring most frequently (the mode)
among any set of k-approximate nearest neigh-
bors to the query point. Note that no infor-
mation (exact or approximate) on the distance
to the k nearest neighbor need be supplied.
Preprocessing consists of building a balanced
box decomposition tree (BBD tree) for the data
points. This is a quadtree-like data structure
of height O(logn) that is based on a decom-
position of space into rectangular-based cells,
each of which is of bounded aspect ratio (they
are not too skinny). See [4] for a more com-
plete description of this data structure. Recall
that r¢ denotes the (unknown) distance from
the query point to its k-th nearest neighbor,
and that ry is the largest ball from which the
mode color can be inferred purely from color
counts (defined in the introduction).

The algorithm maintains a pair of bound-
ing radii »~ and r* such that throughout the
search,

r~<r <rt

As the algorithm proceeds, the lower bound r~
increases monotonically from 0, and the up-
per bound r* decreases monotonically from co.
The algorithm operates by repeatedly expand-
ing the unexpanded nodes of largest size, and
updating estimates for * and r~. For each
node we assume we know the color counts for
points in the corresponding cell, but we know
nothing about the locations of the points within
this cell. Termination occurs either when we
can infer the mode color from the current color
counts, or when the cells have been expanded
to such a small size that we can infer the k
approximate nearest neighbors irrespective of
their specific locations within their cells.

To minimize the number of nodes that par-
ticipate in the computation at any time, if
it can be inferred that a cell associated with
a given node lies completely outside or com-
pletely inside the ball of radius rg, this node

-263 -

need not be expanded further. For each node
v, let dist™ (v) (dist™(v)) denote the minimum
(maximum) distance from the query point ¢ to
the cell associated with v. (These distances
can be computed in O(d) time from BB(v) and
IB(v).) The algorithm maintains three groups
of nodes, In, Out, and Mid, such that

veln = distt(v) <r7,
vE Qut = dist”(v) > rt.

Nodes which satisfy neither of these conditions
are placed in the third group, Mid.

Every point associated with an In-node lies
within the ball of radius r;, and every point in
associated with an Qut-node lies outside this
ball. At all times, the union of the cells associ-
ated with these three groups of nodes forms a
subdivision of the bounding hypercube for the
data points into regions with pairwise disjoint
interiors, and hence induces a partition on the
point set. Here is a description of the algo-
rithm.

(1) (Initialization) r~ = 0, r* = oo, Mid =
{root}, and In = Out = 0.

(2) Repeat the following steps.

(a) (Expansion) Let s be the largest sized
node in Mid. For each node v in Mid
of size s, replace v by its children in
the BBD tree, adding each to Mid.
(If the children are also of size s, then
expand them as well.)

(b) (Update distances) For each new
node v in Mid compute dist” (v) and
dist* (v). For the node v € InU Mid
associate this node with dist™ (v), and
weight weight(v). Using a weighted
selection algorithm, let r~ be the ele-
ment of rank k in this list. Compute
r+ similarly, but using dist* (v).

(c) (Classification) For each node v €
Mid:

o if (dist*(v) < r~) then add v to
In.

o if (dist™(v) > rt) then add v to
Out.

e otherwise leave v in Mid.

(d) (Termination condition 1) Sum the
color counts for all points in InU Mid.

Let M = (my,...,m.) denote the
nonincreasing sequence of these col-
ors. If

k— Z m; > my,

then return the color of m; as the an-
swer.

(e) (Termination condition 2) If 4sv/d <
er~ then enumerate the k£ witnesses
to r~, and return the mode color of
this set.

This algorithm is dovetailed with the k near-
est neighbor algorithm presented by Arya, et
al. [3]. The reason is that if the points are
not well-clustered, then we want to be able to
guarantee a maximum O(k log n) time bound.

The correctness of the algorithm is straight-
forward to establish, and details have been left
to the full paper. One issue which was not
addressed in the algorithm is how nodes are se-
lected for expansion. The method is analogous
to the one described in [4] and is omitted from
this version.

3 Query Sensitive Analy-
sis.

In this section we prove that the search algo-
rithm described in the previous section termi-
nates within time

1
0 ('°g e max(, e)) ’

where § is the query sensitive parameter de-

. fined in the introduction. The algorithm ex-

pands nodes in stages in groups according to
their size. Thus, at stage j > 1 the expanded
nodes are of size s; = 1/2/. Thus the diame-
ter of each expanded cell at stage j is at most
s;V/d. First, we observe that the estimates r~
and rt are accurate estimates of r; to within
this value. (Proofs are omitted from this ver-
sion.)

Lemma 3.1 Immediately after the completion
of stage j,

r- Zrk-—s_,'\/a and rt grk+sj\/¢7.

-264 -

Lemma 3.2 For all sufficiently smalle, the al-
gorithm terminates as soon as

s,-\/(j < rpmax (6, g) .

Because the size of cells decreases by a factor
of 1/2 for every constant number of levels of
descent in the tree, it follows immediately that
the number of stages until termination is

1
0 (log i, - max(é, c)) ’

Next, we claim that at each stage of the algo-
rithm only a constant number of cells can be
expanded, depending on d and e. All of these
cells must overlap a ball of radius r* centered
at ¢ (otherwise they will not be expanded). It
suffices to consider the lowest level of expan-
sion, since this will have the smallest cell size,
and hence require the largest number of cells to
cover the ball of radius r*. Lemma 3.2 speci-
fies the smallest sized node that we consider at
this level, and using the fact that the expanded
cells are pairwise disjoint from one another and
of bounded aspect ratio, by applying a packing
argument, it follows that the number of cells
that overlap the ball of radius rt is

v d
¢ (1+max(6,e/8)> ’

which is O(1) for fixed d and €. By the ar-
guments made at the end of the previous sec-
tion, each stage requires time proportional to
the number of active nodes together with an ad-
ditional factor of ¢ to process each stage. This
establishes the running time stated at the be-
ginning of this section.

4 Experimental Results

To establish its efficiency empirically, we imple-
mented a variation of this algorithm in C++
(called, cann, for chromatic approximate near-
est neighbors), and we compared its perfor-
mance to the (nonchromatic) k approximate
nearest neighbor algorithm developed by Arya,
et al. [3] (called ann). Both algorithms con-
struct essentially the same tree (although the
tree of [3] contains no chromatic information).

This tree is a binary variant of the BBD tree.
Details are presented in the full paper.

In both cases, splitting stopped when four
points or fewer resided in a box. The ann al-
gorithm computed the k approximate nearest
neighbors, and then returned the mode color
of these points. In all cases we used k£ = 5 as
the number of nearest neighbors.

For each algorithm, we measured a num-
ber of quantities for each run: the number of
tree nodes visited by the search, the number of
points encountered, and the number of times a
coordinate of a point was encountered.

Our goal was to show that for well clustered
data sets, cann outperforms ann, and to inves-
tigate the sensitivity of cann to clustering. We
ran our algorithm on two general categories of
experiments, synthetically generated data sets
and real application data sets. Due to space
limitations, we only show results on the appli-
cation data set.

The data points were selected from Landsat-
TMS5 images. The landsat image data consisted
of a collection of pixels, where each pixel is bro-
ken down into 7 spectral bands digitized over
the range 0 to 255 (and hence each is a point in
a 7 dimensional space). The data had already
been classified, through an interactive photoin-
terpretation procedure, into 7 different classes,
according to the U.S. Geological Survey land-
use land-cover (LULC) classification scheme in-
troduced in [1]. From a large data set, we se-
lected 51,609 data entries. Two data sets of
size 10,000 were randomly sampled from this
file. For this version we show results on the
second data set.

Because the data points had already been
classified off-line, we measured the performance

- of both algorithms on a class-by-class basis,

generating 500 query points from each class
(from a different source than data points), and
running each against on of the 10,000-entry
data files. We only tested query points whose
classes appeared in the data set. Experiments
were run with ¢ values ranging from 0.1 to 10.
In Figure 1 and 2 we show the results of 3
representative groups of queries: barren, for-
est and water on each of the two data sets.
For these plots the z-axis is the value of e.
As before, solid lines represent the cann algo-
rithm and dashed lines represent the ann al-

- 265 -

Nodes visited

Nodes visited

gorithm. It can be seen that in the first data
set, water, which exhibited the greatest clus-
tering and separation, demonstrated the great-
est improvement in running time for cann over
ann. In contrast, barren and forest performed
more poorly (owing largely to contamination
from other overlapping classes). In the second
experiment, the removal of some of the contam-
inating classes resulted in an improved perfor-
mance for cann.

450 T T T
barren (ann) s |

400 n bafrren (c(:anni —-—

| orest (ann) x|

S50 forest (cann) ——

300 } * water (ann) o
water (cann) —e—

250 |

200 |

150
100 fe....
50 0 gmmmmmmmmsmmmesooossosssss:

o i A A A A 1 1 s A
0 05 1 16 "2 25 3 35 4 45 5
epsilon

Figure 1: Landsat experiment 1.

* barren (ann) -s--
350 barren (cann; o
forest (ann) -
300 | % forest (cann) —— 1
water (ann) -o--
250 water (cann) —— 1
200 .
150 .
]
O e y
0

0 05 1 15 2 25 3 35 4 45 5
epsilon

Figure 2: Landsat experiment 2.

In summary, the experiments have shown
that for data sets which are well clustered and

and R. E. Witmer. A Land Use and Land
Cover Classification System for Use with
Remote Sensor Data, Geological Survey
Professional Paper 964, 1976.

[2] S. Arya and D. M. Mount. Approximate
nearest neighbor queries in fixed dimen-
sions. In Proc. jth ACM-SIAM Sympos.
Discrete Algorithms, pages 271-280, 1993.

[3] S. Arya, D. M. Mount, N. S. Netanyahu,
R. Silverman, and A. Wu. An optimal al-
gorithm for approximate nearest neighbor
searching. In Proc. 5th ACM-SIAM Sym-
pos. Discrete Algorithms, pages 573-582,
1994.

[4] S. Arya, D. M. Mount, Approximate
Range Searching. Proc. 11th Annu. ACM
Sympos. Comput. Geom., 1995, to appear.

[5] J. L. Bentley, B. W. Weide, and A. C.
Yao. Optimal expected-time algorithms
for closest point problems. ACM Transac-
tions on Mathematical Software, 6(4):563—
580, 1980.

[6] K. L. Clarkson. A randomized algorithm
for closest-point queries. SIAM Journal on
Computing, 17(4):830-847, 1988.

[7] K. L Clarkson. Algorithms for poly-
tope covering and approximation, and
for approximate closest-point queries. In
Proc. 10th Annu. ACM Sympos. Comput.
Geom., 1994.

[8] T. Graf and K. Hinrichs. Algorithms
for proximity problems on colored point
sets. In Proc. 5th Canad. Conf. Comput.
Geom., 1993, pages 420-425.

[9] P. Gupta and R. Janardan and M. Smid.
Efficient algorithms for generalized inter-
section searching on non-iso-oriented ob-
Jects. In Proc. 10th Annu. ACM Sympos.
Comput. Geom., 1994, pages 369-378.

in which clusters are well separated, cann pro- [10] A. K. Jain and R. C. Dubes. Algorithms

vides a significant performance improvement
over the nonchromatic ann algorithm.

for Clustering Data. Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

[11] R. L. Sproull. Refinements to nearest-

References
[1] J. R. Andereson, E. E. Hardy, J. T. Roach,

- 266 -

neighbor searching in k-dimensional trees.
Algorithmica, 6:579-589, 1991.

