Extending Range Queries and Nearest Neighbors

Robin Y. Flatland and Charles V. Stewart
Department of Computer Science

Rensselaer Polytechnic Institute
Troy, NY, 12180

Abstract

Given an initial rectangular range or k nearest
neighbor (k-nn) query (using the Lo, metric), we
consider the problems of incrementally eztending the
query by increasing the size of the range, or by in-
creasing k, and reporting the new points incorporated
by each extension. Although both problems may be
solved trivially by repeatedly applying a traditional
range query or Lo, k-nn algorithm, such solutions
do not minimize the overall time to process all ez-
tensions. Qur algorithms, however, obtain efficient
overall query times by performing novel searches of
multiple range trees and our related extending k-nn
trees. In two dimensions, when gqueries eventually
incorporate ©(N) points-or require E = Q(N) ez-
tensions, the overall retrieval time of our algorithms
is O(E + N), which is optimal. Our extending L
k-nn algorithm immediately provides a new solution
to the traditional Lo, k-nn problem, improving upon
previous results.

1 Introduction

Extending neighborhood problems, a class of prob-
lems generalizing the well-known range queries and
k-nn problems, take a set of points in R% and ask
for the new points incorporated by incrementally en-
larging neighborhoods. In this paper we give efficient
algorithms for two instances of extending neighbor-
hood problems stated formally as follows:

Extending Orthogonal Range Queries Prob-
lem: Given a set of N points in R? and an on-line
sequence of d-dimensional, axis aligned, rectangular
query regions @,...,QE, with each Q; completely
containing Q;_,, for the i(th) extended query, report
the points in @; that are not in Q;_;.

Extending L, k Nearest Neighbors Problem:
Given a set of N points in R?, a query point g, and
an on-line sequence of integers kj,...,kg, with 0 <
ki—1 < k; < N, for the i(th) extended query, report
the k;—; + 1(st) through k;(th) nearest neighbors to
q using the Lo, ! (L1) metric.

Our focus is on minimizing the total time to process

all E extensions. We believe we are the first to ex-

1Distances between two d dimensional points p and g in the
Loo metric are given by d(p, g) = maz(|p1—a1|, Ip2—g2|, ---, [Pa—
gal)- Since there is a linear time isometry from the L to the
Lo metric, our algorithms also apply to the L; metric.

plicitly consider these problems. Because we expect
many sequences of extending queries on a static point
set, our algorithms include a preprocessing stage to
organize the points into a search structure which fa-
cilitates the processing of extending queries. Thus,
we analyze each algorithm based on preprocessing
time, storage, the time to process a single extension,
and the overall time to process all E extensions. Al-
though both problems could be solved trivially by
repeatedly applying a traditional orthogonal range
query [1, 7, 3] or Lo, k-nn algorithm, our algorithms
have asymptotically better overall extension times.
Our results are summarized in Table 1 and described
below. (See [6] for more detail.)

When only a single extension is made, our extend-
ing k-nn algorithm is immediately a new Lo, k-nn
algorithm (see Table 1). In 2D, a minor modifica-
tion reduces the storage requirement to O(N). Our
algorithm improves upon the best known Lo, k-nn
algorithms. It has the same preprocessing and query
time as Eppstein and Erickson [5]’s Lo k-nn algo-
rithm but requires less space and is more general
because k need not be fixed. Further, it solves the
all-k-nearest-neighbors problem more efficiently than
Dickerson et al. [4]’s O(N log N+kN log k) algorithm,
although ours is restricted to the Lo, (L1) metric
whereas theirs is for any convex distance function.

Extending neighborhood problems arise in com-
puter vision surface reconstruction techniques that
incrementally grow surfaces in 3D scene data as well
as k-nn classification schemes that examine the neigh-
bors in increasing order or that increase k online. Be-
cause extending neighborhood problems are natural
generalizations of the widely applicable range queries
and k-nn problems, we suspect they arise in other
applications as well.

2 Range Tree Background

Since our algorithms perform novel searches of
range trees and our related extending k-nn trees, we
begin by reviewing the range tree. A 2D range tree [1]
for a planar point set D is a balanced binary search
tree ordered by z coordinate with the points stored
at the leaves. Each node v stores the z range of the
points in its subtree’s leaves and an array Y (v) of
the points (z;,y;) at the leaves of its subtree ordered
by y coordinate. Each (z;,y;) in Y (v) has two bridge
pointers [7] which connect it to the point in Y (v—1t)

-267 -

Problem Preprocessing| Storage i(th) Extension Overall Time for E Extensions

2D Extending Ortho- O(Nlog N) O(Nlogt N) O(log N + w;) O(Elog(N/E)+ E+w),for EXN

gonal Range Queries O(E + N), for all E
optimal when E = Q(N) or w = ©(N)

3D Extending Ortho- O(NlogZ N) | O(Nlog™ < N)| O(log® N + w;) O((Elog(N/E) + E)log N + w), for EX N

gonal Range Queries O(E + Nlog N), for all E

2D Extending Lo k-nn | O(Nlog N) O(N log® N) O(log N+ki—ki—1) | O(min(Elog(N/E) +E+kg,N)), EXN
optimal when kg = O(N)

3D Extending Loo k-nn | O(Nlog” N) | O(Nlog! T N)| O(log” N+ki—ki—1) | O(min((E log(N/E)+E)log N+kg, N log N)),
E<LN

2D Loo k-nn O(Nlog N) O(N) O(log N + k) query time

3D Loo k-nn O(NlogZ N) | O(Nlog!t¢ N)| O(log® N + k) query time

Table 1: Summary of results. w; is the number of points reported in the i(th) extension, w = Zf’;l w;, and €

is any real greater than 0.

2 and the point in Y (v— rt) with largest y coordinate
less than or equal to y;.

Given a rectan-
gular query region {[z;...Zu}, [¥i---¥u]}, a range tree
may be used to report all points (z;,y;) € D such
that 7; < z; < 7, and ¥ < ¥i < Yu. The tree is
searched from the root for the two leaf nodes P(z;)
and S(z,). P(z;) is the leaf node whose stored point
is the predecessor of z; in D, i.e. the point in D
with largest = coordinate less than z;; S(z,) is the
leaf node whose stored point is the successor of z,
in D, i.e. the point in D with smallest coordinate
greater than z,. The two search paths determine
at most 2log N basic nodes whose subtrees’ leaves
contain exactly those points in the z query range.
Letting C be the last common ancestor of P(z;) and
S(z.), the basic nodes are the right children of nodes
on the path from C to P(z;) and left children of nodes
on the path from C to S(z,) that are not path nodes
themselves. At each basic node b, those points also
in the y query range are reported by scanning Y (b)
from the right of y;’s predecessor in Y'(b). 3 The pre-
decessor of y; in Y (b) can be located in constant time
at each b if an initial binary search for the predeces-
sor of y; in Y (root) is performed and bridge pointers
are followed down the search paths (since for every
node v, the two bridge pointers associated with the
predecessor of y; in Y (v) point to the predecessor of
yi in Y(v—it) and Y (v—rt)).

The range tree with bridge pointers requires
O(Nlog®™! N) preprocessing, O(N log?~! N) stor-
age, and O(log?~* N +w) query time, where w is the
number of points reported. Chazelle’s [3] compressed
range trees reduce the storage to O(N log?~2*¢ N),
for any real € > 0; if the compressed range tree is
used only for counting the points in the query region,
the storage is further reduced to O(N log?~2 N).

3 Extending Orthogonal Range

Queries

Our 2D extending orthogonal range queries algo-
rithm uses two range trees, Ty and Ty, to report

2y—+ 1t and v— rt indicate the left and right children of v.
3Here predecessor is defined the same as before but w.r.t.
the y coordinate and the set of points in Y (b).

the new points incorporated by each larger rectangu-
lar region. Tiling the area covered by the extended
query into four rectangular regions as shown in Fig-
ure la, each tree efficiently reports points from two
of the tiles. Although four queries (one for each tile)
to a single range tree could be used to report the new
points, such a solution requires O(E log N + w) over-
all extension time, where w is the total number of
points reported. Using two range trees, we obtain an
asymptotically faster overall extension time which is
optimal when E = Q(N) or w = O(N).

Ty and T, are built during preprocessing. T7,
is a range tree as described in Section 2. T,
interchanges the roles of z and y, ie it is a
binary search tree ordered by y coordinate with
an array, call it X (v), associated with each node
v ordered by z coordinate. For query Qit1 =
{lzj*t...xi], [yi+t...yit]}, Tzy reports points in re-
gions ri*! = {[z;*'..z}), [y i)} and P =
{(zi...x), [yt ..yit]}, Ty, reports points in
regions rit! = {[zi..zi],[yi...4})} and rit! =
{[z}.-.z3), (Wi--yit]}-

We describe our algorithm inductively for query
Qi+1 assuming query Q; has been processed and
pointers are available to leaf nodes P(z}) and S(z})
in Tzy and P(y;) and S(y,,) in Ty. (P(y;) and S(ys,)
are defined similarly as P(zi) and S(z%) but w.r.t.
the y coordinate.) Query @, our base case, is han-
dled uniquely. It is processed as a normal range query
in both Ty, and Ty,. Initial binary searches for y}’s
predecessor in T,’s Y (root) array and for zj’s pre-
decessor in Ty;’s X(root) array are performed and
bridge pointers propagate this information down the
tree. The four search paths terminate at P(z}) and
S(zl) in Ty and P(y}) and S(yl) in Ty,.

i+1

For query Q;..1, the points contained in region r;
are reported by traversing the path up and back down
T., from leaf node P(z}) to leaf node P(z;*') using
the z range stored at each node to determine when to
descend. The search path determines at most 2log N
basic nodes whose subtrees’ leaves contain exactly the
points in the range [z} *!...z}) of region ri*! (see Fig-
ure 1b). On the way up the tree these nodes are left
children nodes, not on the path themselves, whose
parents are on the path. On the way down these
nodes are right children nodes, not on the path them-

-268 -

SRR

P(x i+1)

f, »
P(x;) P(x;')

Figure 1: Two consecutive extended queries (a) and the corresponding searches of Ty, (b) for reporting points
in regions ri and ri+!. The basic nodes for regions ri and ri*' are unfilled and light gray, respectively.

selves, whose parents are on the path. Leaf node
P(z}) is also included if P(zj*!) # P(z}).

The Y array of each basic node b is searched for
points in the y range [yi!...yit!] of ri*! by locating
the predecessor of y; in Y (b) and scanning to the left
and right from this item since yj*! <y} < yit!. Lo-
cating the predecessor can be done in constant time
if during all extensions including @), whenever the
search moves down the tree, the bridge pointers are
followed and a pointer to the predecessor of y} in
Y (v) is stored at all visited nodes v. The stored pre-
decessor pointers are used to find the predecessor at
nodes when the search moves back up the tree. Us-
ing this, the total time to report the wi*! points in
region rit! is O(log N + wit?).

Tree T3, is also used to report the points contained
in region r3*! by traversing the path from leaf node
S(zi) to S(zit') and scanning the Y arrays of the
basic nodes to report the points in the y ran_§e of
ritl. Reporting points in regions rit! and rit! is
analogous to regions rit! and rj*!, but using tree
T,. instead of T, interchanging the roles of z and
y. To keep the tiles from overlapping, points from
the X arrays in the z range [z}...z}] of query Q; are
reported (see Figure 1a).

After completing the searches of T, and T,
pointers to the four leaf nodes where extension i+2’s
searches begin are available since extension i+1’s four
searches terminate at these nodes.

Theorem 3.1 For the i(th) extension, the w; ap-
propriate points are reported in O(log N + w;) time.
The overall time to process all E eztensions is
O(Elog(N/E) + E +w) when E < N and O(N +E)
regardless of whether E < N or E > N, where
w = 2:5:1 w;. This is optimal when w = O(N) or
E = Q(N).

Proof: Clearly query @, is processed in O(log N +
w) time. All other extensions traverse four paths of
length O(log N) up and back down the tree spend-
ing time at each node proportional to the number
of points reported or constant time if no points are

reported. Thus the worst case time for the i(th) ex-
tension is O(log N + w;).

For the overall extension time when E < N, we
consider the longest possible walk in T, for reporting
points in regions ri, i = 2...E. The walk starts at
P(z}) and moves up the tree and back down to P(z7),
and from P(z?) to P(z}), and so on. Because the
walk moves from right to left across the tree from one
leaf node to another, at most one extension traverses
a path of length 2[log N] through the root, at most
two extensions traverse paths of length 2([log N| —
1) through subtrees rooted at depth 1 in the tree,
and in general, at most 2 traverse paths of length
2([log N — i) through subtrees rooted at depth i.
For each path node, at most one basic node is visited.
Assuming without loss of generality that E is a power
of 2, an upper bound on the total number of path
nodes and basic nodes visited is

log E-1

2 Y 22([log N1 —i)+1] (1)

=0

which is O(E log(N/E) + E). Reporting points from
the other three regions yield the same worst case
walks. The time spent at each node is proportional
to the number of points reported or is constant if no
points are reported. The overall extension time when
E < N is then O(Elog(N/E) + E + w), noting that
query Q; is a special case covered by this asymptotic
bound.

The overall extension time regardless of whether
E < Nor E > N is bounded by O(N + E). Each of
the O(N) internal nodes of T,, and T, is visited at
most a constant number of times since the walks in
T,y and Ty, are partial tree traversals moving from
right to left (or left to right) across the trees. No more
than twa leaf nodes are visited per walk on any ex-
tension, so at most O(E) leaf nodes are visited over-
all. Therefore, the overall extension time is at most
O(E + N). When w = O(N) or E = Q(N), this is
optimal since minimally we must report the points,
and minimally we must spend a constant amount of
time processing each extension. O

-269 -

Preprocessing and storage are asymptotically
bounded by the requirements of the two range trees
which, using Chazelle’s compressed range trees, are
respectively O(N log N) and O(N log® N), for any
real € > 0. Generalizing this algorithm to three di-
mensions is straightforward using three 3D range tree
data structures. Table 1 summarizes the results.

4 Extending L., k Nearest Neighbors

In two dimensions, the k;41 Lo nearest neighbor
of query point g defines a square region in the plane
centered at q containing all points at least as close
to g as itself. We call this the k;4; nearest neighbor
square. For the @+ 1)(th) extension, the k; + 1(st)
to the ki, (th) nearest neighbors of ¢ are exactly the
points contained in the k;;;-nn square, not also in
the k;-nn square ¢ (see Figure 2a). Using a novel in-
terleaved search, our algorithm determines the k-
nn square and makes an extending orthogonal range
query to report the appropriate points.

During preprocessing two 2D eztending k-nn trees,
T, and Ty, are constructed. T is a balanced binary
search tree ordered by z coordinate with the points
stored at the leaves. Each node v is augmented with
two ordered arrays each containing the points stored
at v’s subtree’s leaf nodes. The first array, A= (v),
contains the points in the order they are encoun-
tered by L—, a 135° line swept across the plane from
top to bottom. The second array, A*(v), contains
the points in the order they are encountered by L+,
a 45° line swept across the plane from top to bot-
tom. Bridge pointers are used to connect the items in
A~ (v) to the corresponding items in A~ (v—+it) and
A~ (v—rt), and similarly for A*(v). T, isidentical to
T;, but its search tree is ordered by y coordinate. Due
to the strong structural similarity between extending
k-nn trees and range trees and due to the fact that
we will use these trees for counting only, they can be
constructed in O(N log N) time and stored in O(N)
space in the same way as Chazelle’s [3] compressed
range trees when used for counting only.

These trees are used to count points in wedge
shaped regions of the plane. Query point g parti-
tions the plane into four quadrants (L, R, T, and B)
defined by a 135° line, L, and a 45° line, L}, pass-
ing through ¢ (see Figure 2a). Each node v in T,
defines a vertical slab in the plane which includes
the region on and between vertical lines through the
points stored at the leftmost and rightmost leaves of
v’s subtree. If v is a leaf node, then its slab is just
a vertical line passing through its point. Within the
slab lie exactly the points at the leaves of v’s sub-
tree. For slabs (strictly) to the left of g, arrays A~ (v)
and A+(v) are used to count the points in the wedge
formed by intersecting the slab with quadrant L (see
Figure 2b). This is done by locating the predeces-
sor of L7 in A™(v) (the point in A™ (v) encountered

4For clarity of explanation, we assume the points are in
general position. Specifically, no two points are equidistant
from ¢ and no two points share the same z or y coordinates.
Removing this assumption requires only minor modifications
to the algorithm.

by sweep line L~ immediately before L) and the
successor of L} in A*(v) (the point in At (v) en-
countered by sweep line LT immediately after L7).
This gives us the number of slab points on or below
L and the number below L. The difference is the
number of points in the wedge. Just as predecessor
information was propagated around the range trees
in Section 3, the predecessor of Ly in A~ (v) and
successor of L} in A*(v) can be located in constant
time at visiteg node v if initial searches of the root
arrays A~ (root) and A*(root) are performed, bridge
pointers are followed, and pointers to the successor
and predecessor points are stored at visited nodes.
Thus counting takes only constant time at each vis-
ited node. Similarly, constant time counting can be
done for the slabs in the other quadrants.

During the search for the k;;-nn square, we main-
tain four pointers, t;, j € {L,R,T,B}; t. and tg
point to nodes in Ty, and t7 and tp point to nodes
in T,. The vertical slabs defined by ¢, and tp and
the horizontal slabs defined by tr and tp will al-
ways lie (strictly) to the left, right, above, and below
g, respectively. Associated with the node currently
pointed to by t; are two regions and a count (see
Figure 2c): Sy, is the square region whose boundary
is all points equidistant from g as the side of ¢;’s slab
farthest from g intersected with quadrant j; Cy; is the
number of the points in Sg;; and Ag; is the triangu-
lar region formed by intersecting S; with quadrant
j. Finally, we maintain for each quadrant a count ¢;
which is the number of points in A¢;. Each time ¢;
moves in its tree, c; will be updated using our mech-
anism for counting points in wedges.

The goal in the ¢+1)(th) extension is to “fix” the
four quadrants with respect to the k;;;-nn square.
We describe what it means for quadrant L to be
fixed; the other three quadrants are analogous. Let
l1,15, ..., Iy be the leaf nodes of T; ordered by increas-
ing z coordinate. Then quadrant L is fixed when {L
points to the leaf node t;, = I; (whose slab lies to the
left of q) satisfying the inequality,

Ci; 2 kiy1> C[,.“.

When L is fixed, the leaf node t; = Il; defines the
square S;, which is at least as large as the k;4;-nn
square and hence Cj; > ki4;. The leaf node /;4; im-
mediately to its right defines a square smaller than
the k;y1-nn square and hence Cj,,, < kiy1. (Fig-
ure 2d shows the slab (a line) and corresponding
square for every leaf node whose slab is located to the
left of g. The square fixing quadrant L is indicated.)
When all four quadrants are fixed, the smallest S;,,
j € {L,R,T, B}, is the ki,;-nn square. A quadrant
which is not yet fixed is said to be free.

Our algorithm performs four searches of T and T},
for the four leaf nodes whose corresponding squares
fix the four quadrants w.r.t. the ki1-nn square. The
search begins with ¢;, j € {L,R,T, B}, pointing to
the leaf node whose square fixes quadrant j w.r.t. the
ki-nn square and the counts ¢; are known. Each step
of quadrant j’s search is determined by evaluating
the inequality C;; > kiy1. (We discuss evaluating
this equality below.) Specifically for quadrant L, if

-270 -

L

~kij=7
N nearest neighbor .
o | square

-

B L, L3/ [Below L,

Figure 2: (a) Two nearest neighbor squares and the four quadrants defined by g. (b) Intersection of quadrant
L and a vertical slab. (c) The four squares defined by t;, j € {L, R, T, B}; only t.’s slab is shown. c; is the
number of points in the shaded triangular region in quadrant j. (d) Squares corresponding to each leaf node
whose slab lies to the left of g. The square fixing quadrant L w.r.t. the k;4;-nn square is indicated.

C:. < kiy1, tr moves up the tree towards the root to
the first node whose left child is not on the upward
path, and then down to this left child, making ¢,
point to a node whose slab is adjacent to t;’s old slab
with S;, larger than t1’s old square. This is repeated
until C;;, > ki4+1 at which time the leaf node fixing
L lies either in t;’s left or right subtree. Trying first
to the right, t;, moves to the right child whose slab
is a subset of its parent’s slab with S;, smaller than
its parent’s square. If C;, > kiy1, then the leaf node
fixing L must lie in t;’s subtree, otherwise it lies in
t1’s left sibling’s subtree. The search continues down
the tree in this manner to the leaf node fixing L.

If the four searches were performed independently,
evaluating the inequality Cy; > ki1 at visited nodes
would essentially require an O(log N) range query
resulting in O(log®> N) search time. But using our
counts ¢j, we can always evaluate the inequality in
constant time for one of the free quadrants allowing
that quadrant to advance its search one step. Our
interleaved search repeatedly determines the quadrant
for which the inequality can be evaluated in constant
time and advances that quadrant’s search by one step

until all four quadrants become fized, i.e. all searches

reach the leaf nodes firing their guadrants. Specifi-
cally, while all four quadrants are free, let S;_ be the
current square whose boundary is closest to g of the
four squares Sy;, j € {L, R,T, B}, and let S;, be the
square whose boundary is farthest from ¢ (see Fig-
ure 2¢c where ¢ = R and f = L). Because S;_ is
the smallest square, it is enclosed in the union of the
current four triangular regions A, j € {L, R, T, B},
and so) c¢j > C;,. Also, because S, is the largest
square, it encloses this union, and so) ¢; < Ci,.
Hence, if > ¢; < kiy1 then Ci, < kiy1, implying
that square S;, is smaller than the k;;;-nn square
and quadrant ¢ advances its search one step by mov-
ing t. up the tree to the next adjacent slab, thus
enlarging c’s square. (For example, if ¢ = L then
tz moves up the tree towards the root to the first

node whose left child is not on the upward path, and
then t;, moves to this left child.) Alternatively, if
Y°¢j 2 kit then Cy, > kiy,, implying that square
St, is at least as big as the k;i;-nn square. At this
time, the leaf node fixing quadrant f lies either in
ts’s left or right subtree. Trying the subtree with the
smaller square first, quadrant f advances its search
one step by moving t; down one level in its tree,
thus shrinking f’s square. (For example, if ¢ = L
then t; moves down to the right child. Note that if
the leaf node fixing quadrant L actually lies in t1’s
left sibling’s subtree, eventually S;, will become the
smallest free square with C;;, < k41 and it follows
that ¢z will move up the tree to its left sibling at that
time.)

Using our counting technique, ¢; can be updated
in constant time each time the search is advanced in
quadrant j. For example, when t; moves up the tree,
¢t is incremented by the number of points in the in-
tersection of t7’s new slab and quadrant L. When ¢,
moves down the tree to its right child, ¢, is decre-
mented by the number of points in the intersection
of t1’s sibling’s slab and quadrant L.

When one or more of the quadrants become fixed
(meaning the search in that quadrant has completed),
this scheme requires a slight modification. Fortu-
nately, we will still be able to evaluate the inequal-
ity Cy; > kiy1 for either the largest or the smallest
square in a remaining free quadrant. To show this,
we first make some observations. By definition, for
any fixed quadrant j, Ct,- > kiy1 and Ct; < kit1,
where t; is the leaf node immediately to the right
of t; if j € {L,B} and the leaf node immediately
to its left if j € {R,T}. The square S;; is at least
as large as the ki4+1-nn square, and the square St;, is
smaller than it. No points are located between the
slab lines corresponding to nodes t; and t;. Further,
any square S, , k € {L, R, T, B}, as small or smaller
than St; must have C;, < ki+1, and any square S,
as large or larger than S;; must have C, > kit1.

-271-

To determine which quadrant will execute the next
step of its search when at least one quadrant is fixed,
consider three cases. (1) There is a free quadrant k&
and a fixed quadrant j, with square S;, as large or
larger than S;;. (2) There is a free quadrant k£ and a
fixed quadrant j, with square S;, as small or smaller
than square S,;,. (3) For all free quadrants k and all

fixed quadrants j, square S;, is smaller than square
St; and larger than square Sté. (Cases (1) and (2)
are not mutually exclusive.) In case (1), following
from our observations above, we know that C; 2>
Ci; 2 kiy1, determining the next step in quadrant
k. In case (2), again following from our observations
above, we know that Cy, < Ct; < ki1, determining

the next step in quadrant k. For case (3), we calculate
r =Y cr+ Y cj, where k represents free quadrants,
j represents fixed quadrants, and ¢; is the number
of points in t}’s triangular region. Count c; can be
obtained from c; in constant time by subtracting one
if t;’s point lies in quadrant j, ¢; = cj» otherwise. For
any fixed quadrant j, observe that any square smaller
than S;; and larger than S;; will contain exactly c;

points in quadrant j. Thus: if Sy, is the largest free
square and S;, is the smallest free square, C¢, > 1 >
C:.. Hence if r > kiy1, then C;, > kit1, determining
the next step of the search in quadrant f. If, however,
r < kiy1, then C;, < ki1, determining the next step
of the search in quadrant ¢. Thus, by comparing r to
ki+1 the next step in one of the free quadrants may
always be determined.

The interleaved search is complete when all four
quadrants are fixed. The smallest square is the k;4;-
nn square and an extending range query reports the
points. The data structures are now ready to find the
ki+2-nn square. Specifically, pointers t; point to the
leaf nodes whose squares fix their quadrants w.r.t.
the k;41-nn square and counts c; are known.

The only part of the algorithm remaining is ini-
tializing the data structures in preparation for the
first extension. Given g, we initialize our extend-
ing k-nn search by fixing the four quadrants w.r.t.
the first nearest neighbor square. To do this, the
first nearest neighbor to ¢ in each quadrant is lo-
cated in O(log N) time by searching the appropri-
ate extending k-nn tree using counts ¢; to guide the
search. The point closest to g of these four points is
¢'s nearest neighbor and defines the nearest neighbor
square. Each quadrant is then fixed with respect to
this square in O(log N) time by searching T, or T
for the appropriate leaf node and making t; point to
it. Counts c; are initialized to either zero or one de-
pending on whether or not the point on ¢;’s slab line
lies in quadrant j. (See [6] for more detail.)

Theorem 4.1 For the i(th) extension, the k; — ki—1
appropriate points are reported in O(log N +k;—ki—1)
time. The overall time to process all E extensions is
O(min(Elog(N/E) + E + kg, N)), which is optimal
when kg = Q(N)

Proof: Initializing the search by fixing the four
quadrants w.r.t. the first nearest neighbor square
takes O(log N) time. All other extensions traverse

four paths of length O(log N) up and back down
the tree spending constant time counting at each
node. Thus the worst case time to find the ki-nn
square is O(log N). Reporting the points requires
O(log N + k; — ki_1) time by Theorem 3.1. Noting
that E cannot be larger than N from the problem
definition, a proof similar to that in Theorem 3.1
shows the upper bound on the total number of nodes
visited is O(Elog(N/E) + E), with constant time
spent at each node. Reporting the points requires
O(Elog(N/E) + E + kg) time by Theorem 3.1. The
overall extension time is also bounded by O(N) with
proof similar to Theorem 3.1. When kg = O(N),
this is optimal since minimally we must report the
points. O

Preprocessing and storage are dominated by the
requirements of the extending range queries algo-
rithm. Generalizing our extending k-nn algorithm to
three dimensions is fairly straightforward using three
3D extending k-nn trees. Table 1 summarizes the
results.

5 L, k-nn Algorithm

Our extending Lo, k-nn algorithm is immediately
a new Lo k-nn algorithm by setting E = 1 and
ky = k. In two dimensions, we can reduce the storage
requirements by using Chazelle’s 2D, fixed aspect ra-
tio, range reporting algorithm [2] to report the points
in O(log N + k) time, requiring O(N log N) prepro-
cessing and only O(N) space. As stated in the in-
troduction, this improves upon related but more re-
strictive 2D Lo k-nn algorithms. Since we are not
aware of any such fixed aspect ratio range reporting
algorithm for 3D queries, our new 3D k-nn algorithm
has the same preprocessing, storage, and query time
as our 3D extending k-nn algorithm when E = 1 and
kl = k

References

{1] J. L. Bentley. Multidimensional divide-and-conquer. Com-
maunications of the ACM, 23:214-229, 1980.

[2] B. Chazelle and H. Edelsbrunner. Linear space data struc-
tures for two types of range search. In Proceedings of the
2nd Annual ACM Symposium on Computational Geome-
try, pages 293-302, 1986.

[3] Bernard Chazelle. A functional approach to data structures
and its use in multidimensional searching. SIAM Journal
on Computing, 17:3:427-462, 1988.

[4] Matthew T. Dickerson, R. L. Scot Drysdale, and Jorg-
Rudiger Sack. Simple algorithms for enumerating inter-
point distances and finding k nearest neighbors. Interna-
tional Journal of Computational Geometry and Applica-
tions, 2:221-239, 1992.

[5] David Eppstein and Jeff Erickson. Iterated nearest neigh-

bors and finding minimal polytypes. Discrete and Compu-
tational Geometry, 11:321-350, 1994.

[6] Robin Y. Flatland and Charles V. Stewart. Extending
range queries and nearest neighbors. Technical report,
Rensselaer Polytechnic Institute, 1994.

[7] Dan E. Willard. New data structures for orthogonal range
queries. SIAM Journal on Computing, 14:232-253, 1985.

-272 -

