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Abstract

We present two algorithms for constructing isomor-
phic (i.e. adjacency preserving) triangulations of
two simple n vertex polygons P and Q with k and
I reflex vertices, respectively. The first algorithm
computes isomorphic triangulations of P and Q by
introducing at most O((k + 1)?) Steiner points and
has running time O(n + (k +1)?). The second algo-
rithm computes isomorphic triangulations of P and
Q by introducing at most O(kl) Steiner points and
has running time O(n + kllogn). The number of
Steiner points introduced by the second algorithm
is also worst-case optimal. Unlike the O(n?) algo-
rithm of Aronov, Seidel and Souvaine [1] our algo-
rithms are sensitive to the number of reflex vertices
of the polygons. In particular, our algoruthms have
linear running time when k + ! < 4/n for the first
algorithm, and k! < n/logn for the second algo-
rithm.
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1 Introduction

For many problems in image analysis it is nec-
essary to transform onme picture into another [6].
This is often accomplished by introducing Steiner
points in order to achieve isomorphic triangulations.
Let P,Q be two n vertex polygons with vertices
¥1,...,Un and uj,..., Uy, respectively. The (trian-
gulated) polygons are called isomorphic if there ex-
ists a one-to-one correspondence ¢ of {1,...,n} into
itself such that {v;,v;} is an edge of P if and only
if {ug(i), ug(j)} is an edge of Q. In general, such
an isomorphism may not exist (see [1]). To resolve
this problem it is necessary to introduce new points
at approriate locations within the polygons. Like
in the case of Steiner trees [5] we call these points
Steiner points. This raises the following question:
“Give an efficient algorithm that constructs isomor-
phic triangulations of the polygons P,Q by intro-
ducing the minimum possible number of Steiner
points.” A related question was first proposed by
Goodman and Pollack in 1989 [1].

In this paper we consider the problem for the spe-
cial case when the isomorphism between the two
polygons is already given. This restriction arises
naturally from the application of our problem to
image analysis, i.e. the outline of the images to be
processed predefine a fixed mapping between them.
In [1] Aronov, Seidel and Souvaine [1] give two sim-
ple polygons on n vertices requiring at least (n?)
Steiner points. They give an algorithm for finding
isomorphic triangulations of two simple polygons
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by introducing O(n?) Steiner points. The running
time of their algorithm is O(n?).

We present two algorithms for constructing iso-
morhic triangulations between two simple polygons
P, Q with the same number n of vertices. Let k,l
be the number of reflex vertices of P,Q, respec-
tively. The first algorithm computes an isomor-
phism by introducing at most O((k + 1)?) Steiner
points and has running time O(n+(k+1)?). Steiner
points are introduced via the technique of “optimal
paths”. The second algorithm computes an isomor-
phism by introducing at most O(kl) Steiner points
and has running time O(n + kllogn). In this case,
Steiner points are introduced via the technique of
“ray-shooting”. Our results improve on those of
[1] since our algorithms are sensitive to the number
of Steiner points of the two polygons. Notice that
when k + I < 4/ the first algorithm is linear, and
when ki < n/logn the second algorithm is also lin-
ear. Also when k,! < /n both algorithms introduce
a linear number of Steiner points.

In the next two sections we outline the algorithms
and proofs of correctness; details will appear in the
full paper.

2 Isomorphism via Optimal
Paths

To make things easier, let us assume that we have
two n vertex polygons P and Q with vertices
v1,...,Un and uj,...un, respectively, such that for
all i < n,

(vl'a vi+l)’ (ui’ u'l'+l)1

are edges of P,Q, respectively. We want to find -

isomorphic triangulations of P and Q in which v; is
mapped to u;, fori =1,...,n.

2.1 Algorithm

Theorem 2.1 Given two polygons P and Q with
k and | reflex vertices respectively, we can find iso-
morphic triangulations for them in O(n + (k +1)?)
time by introducing O((k + 1)?) Steiner points.

ProOF (OUTLINE) Assume that P has k reflex
vertices v,,,...,v,, and @ has [ reflex vertices
Ug,,-.-,Uy. Our objective is to show that P and
Q have isomorphic triangulations after introducing
O((k + 1)?) Steiner points.

Define the set Z = {s1,...,5:}U{t1,...,t} and
suppose that the elements of Z are zj,...,2m in
sorted order where m is at most k + . Z contains
the indicess of the reflex vertices of P and Q (see
Figure 1).

We now define two simple polygons P’ and Q' as
follows:

1. Polygon P:

(a) For each vertex v;, of P, compute the
shortest polygonal path P(i) path from
v;, tov,,,,,fori =1,...,m, where m+1 =
1. Let P” (not P’') be the concatenation
of all P(i), for i = 1,...,n. (see Figure 2).

We next observe that P’ has m vertices
(although some of them appear twice on
P"). This follows from the observation
that by the definition of P” the vertices
of P" are of the form v,, or reflex vertices
of P appearing on a shortest path from
some v,; to v,,,,, which in any case, are
already accounted for in Z.
i. Defining P’:
If it so happens that P" is simple then
take P’ = P", otherwise:

ii. If P" is not simple, notice that by
splitting some of its vertices into two
(these vertices are reflex vertices of
P), we can obtain a simple polygon
P’ totally contained in P. Clearly the
number of vertices of P’ is at most
m + k (see Figure 3).

(b)

2. Polygon Q:

(a) We define Q' in a similar way but, using
Q in place of P.

Map v;, on P’ to u,, on Q' and extend this map-
ping in the natural way to all duplicate vertices in-
troduced in case (b.ii) introducing extra vertices as
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necessary on the edges of P’ and Q' so as to ensure
that every duplicate vertex of P’ (or Q') maps to
a different vertex of Q' (P’). It is not hard to see
that in this last step, the number of vertices of P’
and Q' increases to at most m + k +1 < 2(k + ).

It now follows that P’ and @' have isomorphic
triangulations with O((k + 1)?) Steiner points.

Now P\ P’ and Q\ Q’ can be decomposed into m
simple (spiral) polygons Py, ..., Pn whose bound-
aries can be decomposed into a convex and a reflex
chain. The convex chain is that joining v;, to v;,,,
on P (resp. u;, to u;,,, on Q ) and the reflex chain
is the shortest path from v;; to v,,,, in P (resp. u.,
to u;,,, in Q).

Now we can prove the following lemma.

Lemma 2.1 Let P and Q be spiral polygons
with vertices v1,...,Vn and uj,...,un such that
v1,..., U and uy, ..., ur are all the reflez vertices of
P and Q, respectively. "Then there are isomorphic
triangulations of P and Q in which v; is mapped
to u;, i = 1,...,n containig at most O(k?) Steiner
points. u

Let r; be the number of reflex vertices of P;, then
by the previous paragraph, there are isomorphic tri-
angulations between P; and Q; using O(r?) Steiner
points. However since the sum r; + -+ + rp is
O(k + 1) it follows easily that

24t rl = O((k+1)?)

and our result now follows.

2.2 Complexity

The only part that has to be analyzed here is the
construction of P and Q"”. Next we will show how
to do this in linear time.

First obtain a triangulation H of P using
Chazelle’s linear time algorithm [2], and consider
the duat tree T of H. Observe that P” intersects
each edge in H at most twice. It is well known
that the shortest path between any two points of P
corresponds to a path in T. Moreover by the pre-
vious observation each edge of T is used at most
twice. Now we can prove the following estimate on
the time complexity.

Lemma 2.2 Calculating P" (and Q") can be done
in linear time.

ProoFr (OUTLINE) Mark on T those vertices corre-
sponding to triangles containing vertices v;,. Delete
from T by standard leaf prunning techniques all
those triangles not intersected by P". We can now
calculate in linear time the paths on T from v;; to
v;,,, and thus the shortest paths from v;, to v,

i+1
in total linear amortized time. -
This completes the outline of the proof of the
theorem. [ |

3 Isomorphism via  Ray-

Shooting

The previous algorithm needs to introduce O((k +
1)?) Steiner points. Thus the number of Steiner
points is proportional to the square of the largest
number of reflex vertices among the given polygons.
In the sequel we give an algorithm that uses only
O(kl) Steiner points but at the cost of a logn time-
overhead.

3.1 Algorithm

Theorem 3.1 Given two polygons P and Q with
k and 1 reflex vertices respectively, we can find iso-
morphic triangulations for them in O(n + kllogn)
time by introducing O(kl) Steiner points.

PrOOF (OUTLINE) The idea is to establish the de-
sired triangulation of the polygon P on the vertices
of a convex polygon (say, a circle). The introduction

.of Steiner points corresponds to a planar partition

of the circle. Now we “overlay” the planar partition
of P with the planar partition of @ keeping track
of the Steiner points introduced. From this we can
deduce easily the isomorphic triangulations of the
polygons. Details are as follows.

1. Polygon P:

(a) Map the n vertices of P on n equidistant
verices all lying on a circle.
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(b) Move clockwise along the vertices and re-
cursively “eliminate” all reflex vertices by
forming a convex decomposition of the
polygon P. To eliminate a reflex vertex,
extend the two edges of the reflex ver-
tex inside the polygon and shoot a ray
within the region delimited by these two
extended edges (see Figure 4) until it in-
tersects an edge of the polygon, say the
edge determined by the vertices v;, vit1.
Introduce this point of intersection be-
tween v; and v;4; as a Steiner point (see
Figure 5). Now map this Steiner point
between the images of these two vertices
on the circle. In addition, form a planar
subdivision that updates the polygon by
incorporating the new edge between the
reflex vertex and the Steiner point intro-
duced.

This introduction of Steiner points de-
composes the polygon into k 4+ 1 convex
regions. On the circle this corresponds to
a planar subdivision into k+1 correspond-
ing convex regions. In view of the equiva-
lent numbering it also follows that any tri-
angulation of a region in the polygon has
an isomorphic triangulation on the corre-
sponding region on the circle.

2. Polygon Q: (see Figure 5)

(2) In essence we execute the same algorithm
as above with Q replacing P but we use
the following “overlaying” procedure. We
keep track of new Steiner points intro-
duced via a standard straight-line planar
subdivion data-structure [5]. We traverse
the reflex vertices of Q one at a time mov-
ing clockwise. For each such vertex we in-
troduce a Steiner point on an edge of the
polygon Q (as in the case of the polygon
P); in addition we introduce as Steiner
points the points of intersection of the ray
and the edges of the planar subdivision
corresponding to P. After introducing
these Steiner points we update the data

structure and proceed to the next reflex
vertex of Q.

3.2 Complexity
We observe the following Lemma.

Lemma 3.1 The above ray-shooting divides the
polygon into subpolygons such that the boundary of
each subpolygon can be broken into two chains one
convez and the other not necessarily convez but to-
tally contained in the boundary of the original poly-
gon. a

Using this and standard ray-shooting algorithms
[3] it is easy to see that the complexity of in-
troducing a Steiner point is O(logn) per Steiner
point. Hence the total cost is O(kllog n). The over-
laying procedure above can be performed in time
O(n+ K), where K is the number of Steiner points
introduced, as in Guibas and Seidel [4].

An important feature of the algorithm is that it
requires a date structure for maintaining and in-
troducing Steiner points. Such a data structure is
the planar subdivision [5]. The main cost is in the
“gverlaying” procedure of the two circular planar
graphs. Planarity implies that each internal edge
of the Q intersects at most k internal edges of P.
This determines a total of at most O(kl) points of
intersection. These new points are introduced as
the new Steiner points.

The resulting regions can now be triangulated
thus resulting in equivalent triangulations for the
given simple polygons. This completes the proof of
the theorem. u

4 Comparison of the two algo-
rithms

It easy to see that the first algorithm is superior to
the second only when the polygons have the same
number of reflex verices up to an O(logn) factor.
More precisely this is true exactly when

k
S+

7 = O(logn).

]
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5 Lower Bounds

The number of Steiner points introduced by the sec-
ond algorithm is worst-case optimal (up to a con-
stant factor) with respect to the number of reflex
vertices of the polygons. This follows from the fol-
lowing result.

Theorem 5.1 There ezist two simple polygons
P, Q any isomorphic triangulation of which requires
at least Q(kl) Steiner points.

ProOF (OUTLINE) A slightly modified version of
the example given in [1] is sufficient to prove the
lower bound. u

6 Conclusion

We have given two algorithms for computing iso-
morphic triangulations of any two simple polygons
with the same number n of vertices. We related the
number of Steiner points introduced with the num-
ber of reflex vertices, say k,l of the two polygons,
respectively. We proved that the number of Steiner
points required to obtain isomorphic triangulations
of the polygons is bounded by kl. The second algo-
rithm is worst-case optimal in the number of Steiner
points intorduced, while the first algorithm has su-
perior running time when % + % = O(logn).

Our complexity bounds are valid under the as-
sumption that the isomorphism between the two
polygons is already given. If this is not the case
our bounds (on the number of Steiner points in-
troduced) still remain valid, however determing the
“best” mapping still remains open.

Acknowledgements

Many thanks to Diane Souvaine for suggesting the
problem and Danny Krizanc and J6rg-Ridiger Sack
for useful conversations.

References

(1]

2]

(3]

[4]

(5]

(6]

-295 -

B. Aronov, R. Seidel and D. Souvaine, “On
Compatible Triangulations of Simple Poly-
gons”, Computational Geometry: Theory and
Applications 3(1993) 27-35.

B. Chazelle, “Triangulating a Simple Polygon
in Linear Time”, Discrete and Computational
Geometry 6(1991) 485 - 524.

L. Guibas, J. Hershberger, D. Levem, M.
Sharir and R. Tarjan, “Algorithms for Visi-
bility and Shortest Path Problems Inside Tri-
angulated Simple Polygons”, Algorithmica, 2
(1987), 200 - 237.

L. Guibas and R. Seidel, “Computing Convo-
lutions by Reciprocal Search”, Proceedings of
2nd ACM Conference in Computational Ge-
ometry, (1986), 90 - 99.

F. P. Preparata and M. I. Shamos, “Com-
putational Geometry: An Introduction”,
Springer-Verlag, 1985.

M. Shapira and A. Rappoport, “Shape Blend-
ing using the Star-Skeleton Representation”,
accepted to IEEE Computer Graphics and
Applications.



Figure 5: Polygon P: Introducing Steiner points
Figure 1: Polygon P; a,b, ¢, d are the reflex vertices via ray-shooting

of Q.

Figure 2: Computing shortest paths.

Figure 6: Polygon Q: Introducing Steiner points
via ray-shooting

Figure 3: Splitting some vertices of the shortest
path.

. . . Fi 7: Mapping P and t x polygon
Figure 4: Introducing Steiner points via ray- 1gure apping P and Q onto a convex polygo

shooting
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