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Abstract

We exhibit a family of graphs which can be realized as
pseudo-visibility graphs of pseudo-polygons, but not
of straight-line polygons. The construction is based on
the characterization of vertex-edge pseudo-visibility
graphs of O'Rourke and Streinu[ORS96] and extends
recent results on non-stretchable vertex-edge visibil-
ity graphs of Streinu [Str99]. We show that there is
a pseudo-visibility graphs for which there exists only
one of vertex-edge visibility graph compatible with it,
which is then shown to be non-stretchable. The con-
struction is then extended to an in�nite family.

1 Introduction

Characterizing visibility graphs is a problem with a
distinguished history (Ghosh[Gho88], Everett[Ev90],
Abello and Kumar[AK95]), but so far several attempts
to give good sets of conditions have been proved in-
su�cient.

A di�erent approach, introduced by O'Rourke and
Streinu [ORS96] is to separate the combinatorial as-
pects of the problem from the questions of stretchabil-
ity (known to be notoriously hard for pseudo-line ar-
rangements, cf. Mn�ev [Mn91] and Shor [Sh91]). They
have introduced two new concepts: vertex-edge vis-
ibility graphs [ORS98] and pseudo-visibility [ORS96],
and gave a complete combinatorial characterization
of vertex-edge pseudo-visibility graphs. However, it
is not clear a priori that the new class is any larger
than just the class of straight-line vertex-edge visibil-
ity graphs, since it is conceivable that all such graphs
can be realized with straight line edges (just as the
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class of planar graphs is realizable in this manner).
In [Str99] a whole class of non-stretchable vertex-edge
pseudo-visibility graphs is exhibited, thus settling this
question. Moreover, it is shown that the stretchability
question can in fact be decided e�ciently for a class
of vertex-edge pseudo-visibility graphs which includes
these examples.

The original question was for visibility graphs, not
vertex-edge visibility graphs. Since vertex-edge pseudo-
visibility graphs contain more information than pseudo-
visibility graphs, it is possible to have several vertex-
edge pseudo-visibility graphs compatible with a given
pseudo-visibility graph: some may be stretchable, some
not. We are interested in the question: are there any
pseudo-visibility graphs for which none of the com-
patible vertex-edge pseudo-visibility graph is stretch-
able? The visibility graphs of the non-stretchable
pseudo-polygons from [Str99] are in fact compatible
with straight line polygons, so the same family of ex-
amples does not work directly.

In this paper we exhibit a slightly more involved
example of a pseudo-polygon with the property that
its pseudo-visibility graph uniquely induces a vertex-
edge visibility graph, which is then shown to be non-
stretchable. This provides a strong separation be-
tween straight-line and pseudo visibility graphs. The
example is then extended to an in�nite family.

2 Preliminaries

Abbreviations: Wemay abbreviate the pre�x pseudo
by p- (as in p-line for pseudo-line), vertex-edge pseudo-
visibility graph by ve-graph, pseudo-visibility graph by
v-graph and generalized con�guration of points by gcp.
We use ccw for counter-clockwise.

An arrangement of pseudolines L is a collection
of simple curves, each of which separates the plane,
such that each pair of p-lines of L meet in exactly one
point, where they cross.

De�nition 2.1 Let V = fv0; v1; : : : ; vn�1g be a set
of points in the Euclidean plane IR2, and let L be an

arrangement of
�
n

2

�
pseudolines such that every pair of

points vi and vj lie on exactly one pseudoline lij 2 L,



and each pseudoline in L contains exactly two points of
V . Then the pair (V;L) is a generalized con�guation
of points in general position.

Two points a and b on a pseudoline l 2 L determine
a unique (closed) segment ab consisting of those points
on l that lie between the two points. For 0 � i � n�1,
let ei = vivi+1 be the segment determined by vi and
vi+1 on li;i+1 .

1

De�nition 2.2 The segments ei = vivi+1 form a pseudo-
polygon i�:

1. The intersection of each pair of segments adja-
cent in the cyclic ordering is the single point
shared between them: ei \ ei+1 = vi+1, for all
i = 0; 1; : : : ; n� 1.

2. Nonadjacent segments do not intersect: ei\ej =
;, for all j 6= i+ 1.

A p-polygon is a simple closed Jordan curve and
separates the plane into two regions. We assume with-
out loss of generality that the vertices of the p-polygon
are numbered in ccw order, i.e. that the interior of the
polygon lies to the left as the boundary is traversed in
this order.

Pseudo-visibility is determined by the underlying
arrangement L: lines-of-sight are along pseudolines in
L.

De�nition 2.3 Vertex vi sees vertex vj (vi $ vj) i�
either vi = vj, or they lie on a line lij 2 L and the
segment vivj is nowhere exterior to P .
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Figure 1: A non-stretchable generalized con�guration
of points.

De�nition 2.4 The vertex-vertex pseudo-visibility graph
(v-graph)GV (P ) of a p-polygon is a labeled graph with
node set V , and an arc between two vertices i� they
can see one another (according to Def. 2.3).

1All index arithmetic is mod n throughout the paper.

We will often abbreviate GV (P ) to GV . Note that GV

is Hamiltonian: the arcs corresponding to the polygon
boundary form a Hamiltonian circuit (v0; : : : ; vn�1).
And also note that since GV is labeled by V , which
we assumed was labeled in a ccw boundary traver-
sal order, the Hamiltonian circuit is provided by the
labeling of the graph.

To de�ne vertex-edge pseudo-visibility we need to
de�ne when a vertex sees an edge. This is based on the
notion of a \witness" for a visible pair. Let rij � lij
be the ray directed from vj not including vi, closed at
vj.

De�nition 2.5 Vertex vj is a witness for the vertex-
edge pair (vi; e) (and we say that vi sees edge e) i�
either

1. vi is an endpoint of e, and vj is also (here we
permit vj = vi); or

2. vi is not an endpoint of e, and

(a) vi sees vj; and

(b) the ray rij intersects e at a point p,

(c) either vj = p, or the segment vjp is nowhere
exterior.

We will refer to the line lij in the above de�nition as
the witness line.
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Figure 2: A non-stretchable pseudo-polygon.

De�nition 2.6 The vertex-edge pseudo-visibility graph
GV E of a polygon is a labeled bipartite graph with node
node set V [E, and an arc between v 2 V and e 2 E

i� v can see e (according to Def. 2.5).

Notation: Let P (i; j) be the open boundary inter-
val containing all verices and edges of P encountered
in a ccw traversal of the boundary of P from vi to
vj. Similarly we de�ne P [i; j), P (i; j] and P [i; j] to
include one or both endpoints of the interval.

The following lemma has been proved in [ORS96]:

Lemma 2.7 If vk sees non-adjacent edges ei and ej
and no edge between, vk 2 P [j+1; i], then exactly one
of Case A or B holds:



A 1. vk sees vi+1 but not vj.

2. vi+1 is the right-witness for (vk; ej).

3. vi+1 sees ej but vj does not see ei.

B 1. vk sees vj but not vi+1.

2. vj is the left-witness for (vk; ei).

3. vj sees ei but vi+1 does not see ej

One more concept needed is that of a \pocket":

De�nition 2.8 If vi sees ej and vr and vl are the
right and left witnesses respectively, then P [i; r) and
P (l; i] are the right and left near pockets, and P (r; j]
and P [j + 1; l) are the right and left far pockets of
vi ! ej respectively.

The following lemma has been proved in [ORS96].

Lemma 2.9 If vi sees ej and vr and vl are the right
and left witnesses respectively, then

1. No vertex in the right near pocket sees an edge
in the right far pocket.

2. No vertex in the right far pocket sees an edge in
the right near pocket.

Symmetric claims hold for the left pockets.

Lemma 2.10 If vi sees ej and vr and vl are the right
and left witnesses respectively, then vr is an articula-
tion point of the subgraph of GVE induced by P [i; j],
and symmetrically vl is an articulation point of the
subgraph induced by P [j+ 1; i].

Theorem 2.11 If GV E is the vertex-edge visibility
graph of a pseudo-polygon P , then it satis�es these
two properties:

1. If vk sees non-adjacent edges ei and ej and no
edge between, vk 2 P [j + 1; i], then exactly one
of these holds:

A. (vi+1; ej) 2 GV E , or

B. (vj; ei) 2 GVE .

2. In the two cases above, additionally:

A. vi+1 is an articulation point of the subgraph
of GVE induced by P [k; j].

B. vj is an articulation point of the subgraph of
GVE induced by P [j + 1; k].

It has been shown in [ORS96] that these properties
provide a complete characterization of vertex-edge pseudo-
visibility graphs.

We now turn to stretchability questions. The basis
of our construction comes from a classical example
of a non-realizable allowable sequence, the so-called
non-realizable pentagon (see [GP93]). The �ve central
points in Figure 1 are pairwise connected by pseudo-
lines. We force these pseudo-lines to cross such that

we can then place the other exterior �ve points. We
then draw extra pseudo-lines connecting all these pairs
of points. This can be achieved in several ways, but
each is a non-stretchable con�guration of points.

To get an exampel of a non-stretchable pseudo-
polygon, as in [Str99], we place a pseudo-polygon on
top of this generalized con�guration of points, as in
Figure 2. No matter how the other pseudo-lines in
the con�guration meet, the basic internal structure
remains the same: they all have the same vertex-edge
visibility graph. Also, any pseudo-polygon with this
ve-graph has to contain the non-realizable pentagon
as un underlying subarrangement of its con�guration
of points.

3 An unstretchable vertex-vertex pseudo-visibility
graph

Our goal is to extend this example to a non-realizable
pseudo v-graph. We would like to get a v-graph with
only one compatible ve-graph - the realizable one. But
unfortunately the v-graph underlying the unstretch-
able ve-graph (Figure ??) has both realizable and
unrealizable compatible ve-graphs.

So we'll have to work harder to get our example.
Notice that in general a v-graph can have many com-
patible ve-graphs (exponentially many, as shown in
the full paper).

Figure 3: The gadget used in constructing the non-
realizable v-graph.

The idea for obtaining a non-stretchable v-graph
is to brake the symmetry, forcing the v-graph to have
only one ve-graph. This ve-graph should lead to the
non-stretchable pentagon. The construction is more
complicated. It is based on the gadget in Fig. 3. The
gadget is repeated at each of the �ve exterior vertices
of the pentagon. The shick solid edges represent the
common part of the v-graph, corresponding to the cen-
tral mutually visible �ve vertices of the non-realizable
pentagon. The thin solid and the thin dashed edges
on the top are the actual gadget. The dashed edges
are the symmetry brakers.

Let's prove that there is only one compatible ve-
graph for this v-graph.



The argument is based on the properties of ve-
graphs listed in the Preliminaries. Let's denote the rel-
evant vertices of the gadget as in Figure 4: v1; v2; b2; w2; t; w1

and b1.
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Figure 4: The labeled gadget.

Then since v1 sees w2, v1 sees b1 and no other ver-
tex between these tow (in the ccw order induced by
the boundary of the polygon), it follows that either
b1 or w2 is an articulation point for t, when visibility
from v1 is considered. But w2 can't be, since b2 sees t
(otherwise we would get a contradiction of the artic-
ulation point property of ve-graphs for b2 in the near
pocket, t in the far pocket, with articulation point w2

and visibility from v1.
So it follows that b1 has to be articulation point

for t with visibility from v1. But then it follows that
the pseudo-line through v1b1 extends to intersect the
edge tw2 (as in Figure 4).

A similar argument holds for the pseudo-line through
v2b2. When we repeat this for all the �ve gadgets, we
realize that we forced the unrealizable pentagon from
Figure 1 as part of the underlying con�guration of
points for the ve-graph!

This completes the un-stretchable v-graph exam-
ple. In the full paper we also show that this example
can be extended to an in�nite family.

4 Conclusion

We have shown that the class of pseudo v-graphs is
strictly larger than the class of straight-line v-graphs.
This result, together with the main characterization
from [ORS96], yields a number of open problems for
further research, which are described in the full paper.
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