
CCCG 2006, Kingston, Ontario, August 14–16, 2006

Realization of Degree 10 Minimum Spanning Trees in 3-Space

James King∗

Abstract

We show that any tree whose maximum degree is at
most 10 can be drawn in 3-space such that it is the
minimum spanning tree of its vertices.

1 Introduction

This paper investigates the realization problem for
minimum weight Euclidean spanning trees, defined as
follows: given a tree T , place the vertices of T as points
in Euclidean space such that T is the minimum spanning
tree of its vertices, or determine that no such placement
exists [1]. If such a placement exists in Rd, we say that
T can be realized in d-space. We refer to the process of
placing the vertices of T as realization.

The realization problem has been solved for the case
where d = 2. Monma and Suri [2] provide a linear
time algorithm for the placement of the vertices of T
on a plane when no node in T has degree greater than
5. In the same paper, they prove that no appropriate
placement exists if T has any node with degree greater
than 6. For a tree T of maximum degree 6, Eades and
Whitesides [1] prove that determining whether T can be
realized in 2-space is NP-complete.

In the case where the vertices are to be placed in
3-dimensional Euclidean space, the realization problem
has not been completely solved. Liotta and Di Battista
[3] prove that any tree with maximum degree at most 9
can be realized in 3-space, and that no tree with maxi-
mum degree greater than 12 can be realized in 3-space.
In the case where a tree T has maximum degree 11 or
12, it is not known whether there exists a polynomial
time realization algorithm for T , or even whether ev-
ery such T can be realized. Previously this was also
unknown for trees of maximum degree 10.

In this paper we provide a linear-time algorithm for
realizing trees of maximum degree at most 10 in 3-space.

∗Department of Computer Science, McGill University,
jking@cs.mcgill.ca

Figure 1: From left to right, cross sections of a 1-cap, a
1/2-cap, and a 1/∞-cap.

2 Preliminaries

2.1 Notation

T is the tree we want to realize. V is the vertex set of
T . ∆ is the maximum degree of any vertex in V . T (x) is
the subtree of T rooted at vertex x. V (x) is the vertex
set of T (x). (x, y) is the edge between two vertices x
and y.

2.2 r-caps

Given some r < 1 we now describe a shape that we
call an r-cap. Consider a sphere S of radius l centred at
cS and a ball B of radius rl centred at cB such that cB

is a point on S. Start with B, then remove the region
on or within S, not including cB . What we have now is
the r-cap that we denote by C(r, cS , cB). We say that
the centre of this r-cap is cB . Again, cB is included in
the r-cap but no other point on S is.

2.3 Placement and Restriction

As our realization algorithm runs it places vertices
and restricts vertices to r-caps. When a vertex is placed,
its position is fixed and will never change (except in the
case where the entire set of placed vertices is translated,
rotated, or dilated). If a vertex x is restricted to an r-
cap C it means that either x has already been placed
in C or x will eventually be placed somewhere in C. If
we say that V (x) is restricted to C, it means that every
vertex in V (x) is restricted either to C or to another
r-cap that lies completely within C.

2.4 The Independence Property

If during the placement of the vertices of T we have
a vertex x and its parent p that have both been placed,
the significance of C(r, p, x) for some positive r < 1 is as
follows. If V (x) is restricted to C(r, p, x) and all other

 39

18th Canadian Conference on Computational Geometry, 2006

vertices are placed or restricted such that (p, x) is guar-
anteed to be the shortest edge between a vertex in V (x)
and a vertex not in V (x), then we say that C(r, p, x) is
independent. If this is the case, we are guaranteed that
p and x will be adjacent in MST(V) when all vertices
have been placed. Consider in particular a placement of
V such that, for every vertex x with a parent p, there is
some positive r < 1 such that C(r, p, x) is independent.
In MST(V) every non-root vertex would necessarily be
adjacent to its parent, so MST(V) would be equivalent
to T .

2.5 The Construction Lemma

For r2 < r1 < 1 we say that a vertex x is r1 to
r2 constructible if, given an r1-cap C(r1, p, x) where
dist(p, x) = l/r1, we can place each child xi of x in
C(r1, p, x) such that

1. dist(x, xi) = l(1− r2)

2. for any xi, xj with i #= j, dist(xi, xj) ≥ l(1 + r2)

3. C(r2, x, xi) is completely contained within
C(r1, p, x).

It is important to note the following: if we place the
children of x to satisfy these conditions, then restrict
V (xi) to C(r2, x, xi) for each xi, the independence of
C(r1, p, x) implies the independence of each C(r2, x, xi).

Lemma 1 (Construction Lemma) For any positive r ≤
1/2, any vertex with at most 9 children is r to r2/256
constructible.

Proof. The proof of this lemma describes a scheme for
r to r2/256 construction of a vertex x. We have included
it separately as Section 3. !

2.6 The Algorithm

Any nontrivial tree T must have a vertex of degree
1, and we label one such vertex, which we denote by
v1, as the root. We place v1 at (0, 0,−2) and place its
child, denoted v2, at the origin. We then restrict V (v2)
to C(1/2, v1, v2). Now C(1/2, v1, v2) is independent and
we can call Recurse(1/2, v1, v2), whose pseudocode is
included as Algorithm 1.

The independence of C(r, p, x), along with the restric-
tion of each V (xi) to C(r2/256, x, xi), ensures the inde-
pendence of each C(r2/256, x, xi). This means that the
algorithm places V (v2) in such a way that every ver-
tex x in V (v2) is the centre of an r-cap C(r, p, x) where
p is the parent of x and C(r, p, x) is independent for
some positive r < 1. Therefore the embedding has the
property that every vertex of T (excluding the root) is

Algorithm 1 Recurse(r,p,x)
Precondition: C(r, p, x) is independent.

if x is a leaf then
return;

end if
place the children of x in C(r, p, x) as in the proof of
the Construction Lemma;
for all children xi of x do

restrict V (xi) to C(r2/256, x, xi);
end for
for all children xi of x do

Recurse(r2/256,x,xi);
end for

adjacent to its parent in MST(V). So MST(V) is equiv-
alent to T . The proof of the algorithm’s correctness is
completed by the proof of the Construction Lemma in
the following section.

Each call to Recurse(r, p, x) takes constant time and
we make at most one call for each vertex. There is no
superlinear overhead, so our algorithm runs in linear
time.

One drawback to our algorithm is how quickly the
distances between points shrink as we descend down the
tree. The reciprocal of the distance between a parent
and child grows doubly exponentially with the depth of
the parent. In Monma and Suri’s 2-space algorithm [2]
the function grows slightly less quickly, like f(x) = cx2

for a constant c.

3 Proof of the Construction Lemma

In this section we describe how to r to 256r2 construct
a vertex x within C(r, p, x), where p is the parent of x.
For generality we can assume that x has 9 children; it
should be clear that if we can realize any complete 9-
ary tree we can realize any tree in which all nodes have
at most 9 children (simply realize the complete tree,
then remove unwanted vertices). Recall that our root
has only one child so no vertex can have more than 9
children if ∆ ≤ 10.

As our algorithm runs, it can perform any number
of dilations, translations, and rotations on the set of
placed vertices, since these affine transformations can-
not change the topology of MST(V). Note that the
transformations will also be applied to the r-caps to
which vertices are restricted. We can assume that
C(r, p, x) is such that x is located at the origin and
p is located at (0, 0,−1/r). If this is not the case we
can simply transform the entire set of placed vertices to

40

CCCG 2006, Kingston, Ontario, August 14–16, 2006

make it so before we place the children of x. This will
not affect the topology of MST(V).

We place the children of x on the sphere of radius λ
centred at the origin, where λ = 1−r2/256. Starting at
λ(1, 0, 0) we place children around the ‘equator’ of this
sphere as the consecutive vertices of a regular hexagon
on the plane normal to the z-axis. We shall henceforth
refer to the first, third, and fifth of these vertices as
the equatorial children and refer to the second, fourth,
and sixth as the lowered equatorial children, for reasons
that will soon be clear. We place the last 3 children at
coordinates λ(0,

√
1/3,

√
2/3), λ(1/2,−

√
1/12,

√
2/3),

and λ(−1/2,−
√

1/12,
√

2/3). We will refer to these as
the polar children.

The 9 children are now placed such that they are all
at distance λ from the origin and at distance at least λ
from each other, but some are at distance exactly λ from
each other. To space out the children of x, we rotate
them about the origin in three steps. First we rotate
each of the lowered equatorial children towards the neg-
ative z-axis by an angle of α. Next we rotate the polar
children by an angle of β so that their z-coordinates do
not change but they are closer to the lowered equato-
rial children and farther from the equatorial children.
Viewed from the positive z-axis above the points this
would simply be a counterclockwise rotation. Finally,
we rotate the polar children towards the negative z-axis
by an angle of γ so that they are farther away from
each other. We must be careful when choosing values
for these parameters. If α is too great, the lowered equa-
torial children of x will be too close to the parent of x. If
β is too great, the polar children will be too close to the
lowered equatorial children. If γ is too great, the polar
children will be too close to the equatorial children and
the lowered equatorial children. Appropriate values for
the angles are given in the following table.

Parameter Value

α arcsin
(

r
2 −

r2

256 −
r3

256

)

β arccos
(√

3(1− r2
16)(1− 2r2

256)
2

)
− π

6

γ
arcsin

(
1√

3(1− 2r2
256)

)
−

arcsin
(

1√
3

)

It is not difficult to verify that, for each child xi of x,
the angles ensure that C(r2/256, x, xi) lies completely
within C(r, p, x). This matter is essentially handled by
the selection of an adequately small value for α. The

more onerous part of proving that our r to r2/256 con-
struction scheme is correct for vertices with 9 children is
checking that our rotations space out x’s children such
that no two are within a distance of 1 + r2/256 of each
other.

We do not need to check all pairs of these 9 children;
we actually only need to check three pairs — for a polar
child u, the nearest equatorial child v, and the near-
est lowered equatorial child w, we need to check (u, v),
(u,w), and (v, w). Symmetry, along with the fact that
all three of any kind of child are far enough from each
other (this fact can easily be checked), takes care of the
rest. The inequalities that we want to prove rely heavily
upon the fact that, for our purposes, 0 < r < 1/2.

Fortunately for the reader there is insufficient space
for the calculations, which are neither elegant nor par-
ticularly enlightening. Interested readers can see the full
calculations online in a preprint version of this paper at
www.cs.mcgill.ca/~jking/papers/spantree.pdf.

When the children of x are in place they are at
distance 1 − r2/256 from x and at distance at least
1 + r2/256 from each other. Since each C(r2/256, x, xi)
lies completely within C(r, p, x), this proves the Con-
struction Lemma. As a result, the correctness of our
realization algorithm is proven.

4 Conclusions and Future Work

It was previously unknown whether every tree of max-
imum degree 10 could have its vertices embedded in 3-
space such that it was the minimum spanning tree of its
vertices. We gave a linear time algorithm for embedding
any such tree in this way.

The natural progression is to ask whether or not there
exists a polynomial time algorithm for realization of de-
gree 11 trees in 3-space.

Conjecture 1 There are degree 11 trees that cannot be
realized as minimum spanning trees in 3-space.

Our conjecture is based on the observation that one can-
not place 10 points on a hemisphere of radius r such that
no two of the 10 points are at distance less than r from
each other. When a realization algorithm places a ver-
tex x of a tree T , there is a bounded region in which
the vertices in V (x) must be placed. As more vertices
of T are placed the regions become more and more re-
strictive, though each will always contain a hemisphere.
We believe there is some finite h such that the com-
plete 10-ary tree of height h cannot be realized because
the regions available for building subtrees become too
restrictive after a certain depth.

 41

18th Canadian Conference on Computational Geometry, 2006

We also believe that our algorithm can be extended
to realize trees of higher degree in higher dimensional
Euclidean space. After all, our algorithm is essentially
an extension of Monma and Suri’s algorithm [2] from
2-space to 3-space.

Conjecture 2 We conjecture that any tree of maxi-
mum degree H(d) + 1 can be realized in d-space, where
H(d) is the maximum number of points that can be
placed at distance at least r from each other on a d-
hemisphere of radius r.

It seems extremely likely that such realization problems
could be solved recursively by extending the notion of
independent r-caps to higher dimensions. The main dif-
ference in higher dimensions would be how children are
spaced out during the recursive construction. 18 ver-
tices of the regular polytope known as the 24-cell [4]
can be placed at distance at least r from each other on
a 4-hemisphere of radius r. Conjecture 2 therefore im-
plies that any tree of maximum degree 19 can be realized
in 4-space.

References

[1] Eades, P., Whitesides, S.: The realization problem for
euclidean minimum spanning trees is NP-hard. Algo-
rithmica 16 (1996) 60–82

[2] Monma, C., Suri, S.: Transitions in geometric minimum
spanning trees. Discrete & Computational Geometry 8
(1992)

[3] Liotta, G., Di Battista, G.: Computing proximity draw-
ings of trees in the 3-dimensional space. In: 4th Int.
Work. Algorithms and Data Structures. Volume 955 of
Lecture Notes in Computer Science., Springer (1995)
239–250

[4] Sloane, N.J.A.: Tables of spherical codes.
(www.research.att.com/ njas/packings/)

42

