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Predicates for Line Transversals in 3D
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Abstract

In this paper we study various predicates concerning line
transversals to lines and segments in 3D. We compute
the degrees of standard methods of evaluating these
predicates. The degrees of some of these methods are
surprisingly high, which may explain why computing
line transversals with finite precision is prone to error.
Our results suggest the need to explore alternatives to
the standard methods of computing these quantities.

1 Introduction

Computing line transversals to lines or segments is an
important operation in solving 3D visibility problems
arising in computer graphics [3, 5, 6, 7, 8, 11]. In this
paper, we study various predicates and their degrees
concerning line transversals to lines and segments in 3D.

A predicate is a function that returns a value from
a discrete set. Typically, geometric predicates answer
questions of the type “Is a point inside, outside or on
the boundary of a set?”. We consider predicates that
are evaluated by boolean functions of more elementary
predicates which are functions that return the sign (−,
0 or +) of a multivariate polynomial whose arguments
are a subset of the input variables (see, for instance [1]).
By degree of a procedure for evaluating a predicate, we
mean the maximum degree among all polynomials used
in the evaluation of the predicate by the procedure. In
what follows we casually refer to this measure as the
degree of the predicate. We are interested in the degree
because it provides a measure of the number of bits
required for an exact evaluation of our predicates; the
number of bits required is roughly the product of the
degree with the number of bits used in representing each
input value.

In this paper, we first study the degree of standard
predicates for determining the number of line transver-
sals to four lines or four segments; recall that four lines
in 3D admit 0, 1, 2 or an infinite number of line transver-
sals and that four segments admit up to 4 or an infinite
number of line transversals [2]. We also consider the
predicate for determining whether a minimal (i.e., lo-
cally shortest) segment transversal to four line segments
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is occluded by a triangle. Finally, we study the predi-
cate for ordering planes through two fixed points, each
containing a third rational point or a line transversal
to four segments or lines. This predicate arises in the
rotational plane sweep algorithm of Goaoc [9] that com-
putes the maximal free segments tangent to four among
k convex polyhedra in 3D. This algorithm performs n
rotational sweeps of a plane, one about each edge in the
scene, which we call the reference edge. All transversals
to the reference edge and three other edges are com-
puted in one sweep. The events of the sweep correspond
to planes that contain a vertex not on the reference line
(i.e., the line containing the reference edge) or that con-
tain a line transversal to the reference line and three
other segments. This algorithm is the asymptotically
fastest known for this problem.

Our study shows that standard procedures for solv-
ing these predicates have high degree. In particular,
we show that determining whether a minimal segment
transversal to four line segments is occluded by a tri-
angle can be evaluated by a degree 90 predicate Also,
the predicate for comparing, in a rotational sweep, two
planes, each defined by a line transversal, can be evalu-
ated by a degree 168 procedure. These very high degrees
may help explain why fixed-precision implementations
for solving 3D visibility problems are prone to errors
when given real-world data.

2 Computing lines through four lines

We describe a method for computing the line transver-
sals to four lines. This method is a variant, suggested
by Devillers and Hall-Holt [4] and also described in Red-
burn [12], of that by Hohmeyer and Teller [10]; the dif-
ficulty with the latter method is the use of the singular
value decomposition for which we only know of numer-
ical methods.

Each line can be described using Plücker coordinates
(see [13], for example, for a review of Plücker coor-
dinates). If line l is represented by a direction vector
!u and a point p then we represent l by the six-tuple
[!u, !u × p]. The side product # of any two six-tuples
A = [a1, a2, a3, a4, a5, a6] and B = [b1, b2, b3, b4, b5, b6] is
A#B = a1b4 + a2b5 + a3b6 + a4b1 + a5b2 + a6b3. Recall
that two lines intersect if and only if the side product
of their Plücker coordinates is 0.

Our problem then is to find all lines k =
[x1, x2, x3, x4, x5, x6] such that k # li = 0 for 1 ! i ! 4
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which can be written in the following form:





a4 a5 a6 a1 a2 a3

b4 b5 b6 b1 b2 b3

c4 c5 c6 c1 c2 c3

d4 d5 d6 d1 d2 d3









x1

x2

x3

x4

x5

x6




=





0
0
0
0



 (1)

where the four rows of the matrix contain the Plücker
coordinates of the four lines. This can be rewritten as




a4 a5 a6 a1

b4 b5 b6 b1

c4 c5 c6 c1

d4 d5 d6 d1









x1

x2

x3

x4



+





a2x5 + a3x6

b2x5 + b3x6

c2x5 + c3x6

d2x5 + d3x6



 =





0
0
0
0





Let δ denote the determinant of the above 4 by 4 matrix.
Assuming δ $= 0, we can solve the system for x1, x2, x3,
and x4 in terms of x5 and x6. Applying Cramer’s rule,
we get: 





x1 = −(α1x5 + β1x6)/δ
x2 = −(α2x5 + β2x6)/δ
x3 = −(α3x5 + β3x6)/δ
x4 = −(α4x5 + β4x6)/δ

where αi (respectively βi) is the determinant δ with
the ith column replaced by [a2, b2, c2, d2]T (respectively
[a3, b3, c3, d3]T ). We rewrite this system as






x1 = α1u + β1v
x2 = α2u + β2v
x3 = α3u + β3v
x4 = α4u + β4v
x5 = −u δ
x6 = −v δ

(2)

Since k is a line, we have k # k = 0, that is,

x1x4 + x2x5 + x3x6 = 0.

Substituting in the expressions for x1 . . . x6, we get

Au2 + Buv + Cv2 = 0 (3)

where

A = α1α4 + α2δ,
B = α1β4 + β1α4 + β2δ + α3δ,
C = β1β4 + β3δ.

Solving this degree-two equation in (u, v) and replacing
in (2), we get (assuming for clarity that A $= 0) that the
Plücker coordinates of the transversal lines k are:






x1 = −B α1 + 2 A β1 ± α1

√
B2 − 4 A C

x2 = −B α2 + 2 A β2 ± α2

√
B2 − 4 A C

x3 = −B α3 + 2 A β3 ± α3

√
B2 − 4 A C

x4 = −B α4 + 2 A β4 ± α4

√
B2 − 4 A C

x5 = B δ ± δ
√

B2 − 4 A C
x6 = −2 A δ

(4)

Number of line transversals. Note that the four input
lines admit infinitely many transversals if A = B = C =
0 or the 4 by 6 matrix of Plücker coordinates (in (1)) has
rank less than four. Otherwise, if B2−4 A C is negative,
zero, or positive, the four input lines admit zero, one,
or two line transversals, respectively.

Computing points on the line transversals. Denote
by w1 (resp. w2) the vector of the first (resp. last) three
coordinates of (x1, . . . , x6), and let n denote any vector.
Then, if the four-tuple (w2 × n, w1 · n) is not equal to
(0, 0, 0, 0), it is a point (in homogeneous coordinates) on
the line k [13]. By considering the axis unit vectors for
n, we get that the non-zero four-tuples

(0, x6,−x5, x1), (−x6, 0, x4, x2), (x5,−x4, 0, x3) (5)

are points on the transversal lines k. Two of these four-
tuples are points on k unless w2 = 0 and only one coor-
dinate of w1 is non-zero, but then k is one of the axis.
Hence we have the following lemma:

Lemma 1 If four lines, defined by pairs of points, ad-
mit finitely many transversal lines, we can compute on
each transversal two points whose homogeneous coordi-
nates have the form φi + ϕi

√
∆, i = 1, . . . , 4, where

φi,ϕi, and ∆ are polynomials of degree at most 20,
7, and 26, respectively, in the coordinates of the input
points.

Proof. The assumption that the four lines admit
finitely many transversals ensures that the 4 by 6 ma-
trix of Plücker coordinates (in (1)) has rank four; hence
there is a 4 by 4 sub-matrix of rank four which we can
use for solving the system as described above. More-
over, if there are finitely many transversals, then A,B,
and C are not all zero and Eq. (3) has at most two real
solutions.

We compute the degree, in the coordinates of the in-
put points, of the various polynomial terms defining the
points (5). For each input line li, the first and last three
coordinates of its Plücker representation have degree 1
and 2. Hence δ, α4, and β4 have degree 7 and αi and βi

have degree 6 for i = 1, 2, 3. Hence, A,B, and C have
degree 13 and bounds on the degrees of φi,ϕi, and ∆
follows.

Finally, it should be noted that, when the 4 by 6
matrix of Plücker coordinates (in (1)) has many 4 by
4 sub-matrices of rank four, the choice of such a sub-
matrix has an impact on the degree of φi,ϕi, and ∆. It
is straightforward to observe that the 4 by 4 sub-matrix
we considered leads to highest degrees for φi,ϕi, and
∆. This is necessary since the 4 by 6 matrix of plucker
coordinates may have only one 4 by 4 sub-matrix of rank
four. "
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3 Predicates

3.1 Preliminaries

We start by two straightforward lemmas on the degree
of predicates for determining the sign of simple algebraic
numbers. 1

Lemma 2 If a, b, and c are polynomial expressions of
(input) rational numbers, the sign of a + b

√
c can be

determined by a predicate of degree

max{2 deg(a), 2 deg(b) + deg(c)}.

Lemma 3 If αi,βi, δ, µ, i = 1, 2, are polynomial ex-
pressions of (input) rational numbers, the sign of

α1 + β1

√
δ + (α2 + β2

√
δ)
√

µ

can be obtained by a predicate of degree

max{4 deg(α1), 4 deg(β1) + 2 deg(δ),
4 deg(α2) + 2 deg(µ),

4 deg(β2) + 2 deg(δ) + 2 deg(µ),
2 deg(α1) + 2 deg(β1) + deg(δ),

2 deg(α2) + 2 deg(β2) + 2 deg(µ) + deg(δ)}.

3.2 Transversals to four lines

We consider first the predicate for determining whether
four lines admit 0, 1, 2, or inifinitely many line transver-
sals. An evaluation of this predicate directly follows
from the algorithm described in Section 2 for comput-
ing the line transversals. As mentioned there, the num-
ber of transversals follows from the sign of the 4 by 4
sub-determinants of the 4 by 6 matrix of Plücker coordi-
nates of the four lines and from the signs of A, B, C, and
B2 − 4 A C. The degree of the 4 by 4 sub-determinants
is 7 or less, and the degree of A, B, and C is 13 or less
(see the proof of Lemma 1). Hence the degree of the
predicate is 26 in terms of the coordinates of the points
defining the lines. To summarize:

Theorem 4 Given four lines, there is a predicate of
degree 26 in the coordinates of the points defining the
lines, to determine whether those lines admit 0, 1, 2, or
infinitely many line transversals.

3.3 Transversals to four segments

Because of the lack of space, we only state our result. 2

Theorem 5 Given four line segments, there is a pred-
icate of degree 42 in the coordinates of their endpoints
to determine whether those lines admit 0, 1, 2, 3, 4, or
infinitely many line transversals.

1Details omitted in this abstract.
2Details omitted in this abstract.

3.4 Transversals to four segments and a triangle

Given a line transversal ' to a set S of segments, a tri-
angle T occludes ' if ' intersects T and if there exist two
segments in S whose intersections with ' lie on opposite
sides of T . Because of the lack of space, we only state
our result. 3

Theorem 6 Let ' be a line tranversal to four line
segments admitting finitely many transversals and let
T = pqr be a triangle. There is a predicate of degree
90 in the coordinates of the points defining the segments
and the triangle to determine whether T occludes '.

3.5 Ordering planes through two fixed points, each
containing a third rational point or a line
transversal

Let ' be a line defined by two points v1 and v2, and !'
be the line ' oriented in the direction −−→v1v2.

We define an ordering of all the planes containing '
with respect to the oriented line !' and a reference point
O (not on '). Let P0 be the plane containing O and ',
and let P1 and P2 be two planes containing '.

We say that P1 < P2 if and only if P1 is encountered
strictly before P2 when rotating counterclockwise about
!' a plane from P0 (see Figure 1a).

Let pi be any point on plane Pi but not on ', for i =
1, 2, and let D(p, q) denote the determinant of the four
points (v1, v2, p, q) given in homogeneous coordinates.

Lemma 7 With χ = D(O, p1) ·D(O, p2) ·D(p1, p2), we
have: if χ > 0, then P1 > P2

else if χ < 0, then P1 < P2

else if D(p1, p2) = 0, then P1 = P2

else if D(O, p1) = 0, then P1 < P2

else P1 > P2.

Proof. Assume first that D(O, p1) ·D(O, p2) > 0, that
is that p1 and p2 lie strictly on the same side of the
plane P0 (see Figure 1b). Then the order of P1 and
P2 is determined by the orientation of the four points
(v1, v2, p1, p2), that is by the sign of D(p1, p2). It is
then straightforward to notice that P1 > P2 if and only
if D(p1, p2) > 0. Hence, if χ > 0, then P1 > P2 and, if
χ < 0, then P1 < P2.

Suppose now that D(O, p1) · D(O, p2) < 0, that is
that p1 and p2 lie strictly on opposite sides of the plane
P0 that (see Figure 1b). The order of P1 and P2 is
then still determined by the sign of D(p1, p2). However,
P1 > P2 if and only if D(p1, p2) < 0. Hence, we have
in all cases that, if χ > 0, then P1 > P2 and, if χ < 0,
then P1 < P2.

Suppose finally that χ = 0. If D(p1, p2) = 0, then
p1 and p2 are coplanar, and P1 = P2. Otherwise, if
D(O, p1) = 0, then P0 = P1 thus P1 is smaller to all

3Details omitted in this abstract.
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P2

Figure 1. P1 < P2

other planes (containing !'), and in particular P1 ! P2.
Furthermore, since D(p1, p2) $= 0, P1 $= P2 and thus
P1 < P2. Otherwise, D(O, p2) = 0 and we get similarly
that P2 < P1. "

Comparing two planes. We want to order planes Pi

that are defined by either line ' and another (input)
rational point not on ', or by line ' and a line transversal
to ' and three other lines.

By Lemma 7, ordering such planes about ' amounts
to computing the sign of determinants of four points
(in homogeneous coordinates). Two of these points are
input (non-homogeneous) rational points on ' (v1 and
v2) and each of the two other points is either an input
(non-homogeneous) rational point ri, i = 1, 2, or is, by
Lemma 1, a point of the form pi+qi

√
∆i, i = 1, 2, where

the ∆i have degree 26 and where the pi and qi are points
with homogeneous coordinates of degree 20 and 7 (in the
coordinates of the input points). If the four points are
all input rational points, then the determinant of the
four points has degree 3. If only three of the four points
are input rational points, then the determinant of the
four points can be expanded into

D(p1, r1) + D(q1, r1)
√

∆1

where the degrees of the D() are 23 and 10, respectively.
Hence, by Lemma 2, the sign of this expression can be
determined with a predicate of degree 46. Finally, if
only two of the four points are input rational points,
then the determinant can be expanded into

D(p1, p2) + D(q1, p2)
√

∆1

+ (D(p1, q2) + D(q1, q2)
√

∆1)
√

∆2,

where the degrees of the D() are, in order, 42, 29, 29,
and 16. Hence, by Lemma 3, the sign of this expression
can be determined with a predicate of degree 168. We
thus get the following result

Theorem 8 Let l be an oriented line specified by two
rational points, let p0 be a rational point not on l, and
let P0 be the plane determined by l and p0. Given two
planes P1, P2 containing l there is a predicate which de-
termines the relative order of P1 and P2 about l with
respect to P0 having degree

• 3 if Pi, i = 1, 2 are each specified by l and some ratio-
nal point pi;

• 46 if P1 is specified by l and some rational point p1

and P2 is specified by a line transversal to l along
with three other lines l1, l2, l3, each specified by two
rational points;

• 168 if Pi, i = 1, 2 are each specified by a line transver-
sal to l along with three other lines li,1, li,2, li,3, each
specified by two rational points.
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