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Small Weak Epsilon-Nets in Three Dimensions
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Abstract

We study the problem of finding small weak ε-nets
in three dimensions and provide new upper and lower
bounds on the value of ε for which a weak ε-net of a
given small constant size exists. The range spaces un-
der consideration are the set of all convex sets and the
set of all halfspaces in R3.

1 Introduction

Let P be a set of n points in Rd, and R be a family
of subsets of Rd, usually called ranges. A set Q ⊆ P is
called an ε-net for P (with respect to R) if for every
range R ∈ R with |R ∩ P | > εn we have R ∩ Q $= ∅.
If we allow Q to be any subset of Rd (instead of being
just a subset of P ), then Q is called a weak ε-net for P
with respect to R.

Hassler and Welzl [5] were the first who introduced
the notions of ε-net and weak ε-net to computational
geometry, and used these concepts to develop linear-
size data structures for certain range query problems.
Later on, these concepts found many applications in
other problems in geometric optimization and approxi-
mation algorithms.

It is well-known that for the range spaces of a finite
VC-dimension c, ε-nets of size O( c

ε log c
ε ) exist [5]. In

fact, any random sample of P of this size is simply an
ε-net for P with probability close to 1. For range spaces
of infinite VC-dimension, the previous result no longer
applies. However, when the range space is the set of all
convex subsets of Rd, Alon et al. [1] has shown that
weak ε-nets of size O(1/εd+1−δd) always exist, where δd

is a positive number tends to zero as d → ∞. This
bound has later been improved to O(1/εdpolylog(1/ε))
[3, 6].

Recently, Aronov et al. [2] have studied small weak ε-
nets in two dimensions, and have provided various upper
and lower bounds on ε for which weak ε-nets of small
constant size exist. The main tools they have used in the
construction of their upper bounds are ham-sandwich
cuts and centerpoints. In this paper, we show that a
generalized version of the ham-sandwich cut, which we
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call unbalanced partitioning, can be used to get improved
upper bounds in two dimensions. We then use this tool
to provide some new results on the small weak ε-nets
with respect to convex sets in three dimensions. We
also study small weak ε-nets with respect to the set of
all halfspaces in R3.

2 Preliminaries

For any range space R, we define εRi to be the minimum
real number, between 0 and 1, such that for any point
set P in Rd, there exists a weak ε-net of size i for P
with respect to R. In this paper, when R is the family
of all convex sets in R3, we drop R from our notations
and simply write εi instead of εRi .

The centerpoint of an n-point set P ⊂ Rd is a point
c such that any convex set containing more than d

d+1n
points of P contains c. It is known that any point set
in Rd admits a centerpoint [4].

Given d sets P1, . . . , Pd in Rd, a ham-sandwich cut
is a hyperplane that simultaneously bisects all the Pi’s.
The ham-sandwich theorem [4] guarantees the existence
of such a cut.

Using ham-sandwich cuts, one can partition any point
set P in the plane into four subsets of equal size, or
into two pair of subsets, such that each pair consists
of subsets of equal size. In this paper, we use a more
general form of the partitioning of the plane, which we
call unbalanced partitioning, as stated in the following
theorem.

Theorem 1 Given an n-point set P ⊂ R2 and four
positive numbers α1, . . . , α4 such that

∑4
i=1 αi = 1,

there exist two lines $ and $′ that partition P into four
subsets A1, . . . , A4 such that for 1 ≤ i ≤ 4, Ai contains
at most αin points of P .

Proof. Let $ be a vertical line that partitions P into
two subsets A and B of sizes at most (α1 + α2)n and
(α3 + α4)n, respectively. We may assume that A and
B are two positive density functions on the plane whose
domains are bounded, connected, and separated by the
line $. We also assume that A is to the left of $. For
any point p on $, we denote by $l(p) (resp. $r(p)) the
line that goes through p and divides A (resp. B) in
ratio α1 : α2 (resp. α3 : α4). If we move p up $ from
bottom to top, the slope of $l(p) continuously increases
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from −∞ to +∞, while the slope of $r(p) continuously
decreases from +∞ to −∞. Thus, at some point p, two
lines $l(p) and $r(p) coincide, which gives the second
line $′ making the desired partition. !

It is known that for any n-point set P ⊂ R3, there
exist three planes that divide P into eight subsets, each
containing at most n/8 of the points of P [7]. We can
slightly modify the proof of this eight-partition theorem
to get the following restricted unbalanced partitioning
in three dimensions.

Theorem 2 Let A be a positive density function over
a bounded connected region C in R3 such that the to-
tal mass of A over C is 1. For any positive number
α ∈ [0, 1

2 ], there exist three planes that partition A into
eight regions, such that two adjacent regions contain
equal mass α and the other six regions contain equal
mass (1− 2α)/6.

The proof of the above theorem is analogous to the
proof of the eight-partition theorem (refer to [7] for the
details of the proof). We just note that for α = 1/8,
Theorem 2 is equivalent to the original eight-partition
theorem.

3 Convex Ranges

3.1 Warm-Up: An Improved Bound in 2D

To demonstrate the usefulness of the unbalanced parti-
tioning, we start by giving a new upper bound for εC4 ,
where C is the family of all convex sets in R2. Aronov
et al. [2] have previously given an upper bound of 4

7 on
the value of εC4 , using traditional ham-sandwich cuts.
We show that our approach of using unbalanced parti-
tioning can lead to a better bound as follows.

Theorem 3 If C is the family of all convex sets in R2,
then εC4 ≤ 6

11 .

Proof. Let P be any n-point set in the plane. Accord-
ing to Theorem 1, we can partition P by two lines $ and
$′ into four subsets A1, . . . , A4 such that A1 contains at
most 2n

11 points, and the other three subsets A2, A3, and
A4, each contains at most 3n

11 points of P . Let q1 be the
intersection point of $ and $′, and let qi, for 2 ≤ i ≤ 4,
be the centerpoint of Ai. We show that Q = {q1, . . . , q4}
is a weak 6

11 -net for P .
Let C be any convex set that avoids Q. Since C

does not contain q1, it must avoid at least one of the
four subsets A1, . . . , A4. Assume first that C avoids A1.
Since C does not contain q2, . . . q4, by the property of
the centerpoints, it contains at most 2

3 ·
3n
11 points from

each of A2, . . . , A4. Thus, in this case, C contains at
most 3 · 2

3 ·
3n
11 = 6

11n points of P .

A3

A1 A5

A8A4

A6A2

A7

q0

Figure 1: Partitioning a point set into eight subsets
A1, . . . , A8 by three planes.

Now, assume that C avoids some other subset, say
A2. It follows that C avoids all the 3n

11 points of A2 as
well as 1

3 · 3n
11 points from each of A3 and A4. Thus, in

this case, C avoids ( 3
11 + 2 · 1

3 ·
3
11 )n = 5

11n points of P .
Therefore, in any case, at most 6

11n points of P can lie
in C. !

3.2 Upper Bounds in Three Dimensions

Now, we turn to the upper bounds in three dimensions.
Here, the range space under consideration is the family
of all convex sets in R3. By the centerpoint theorem, we
have ε1 = 3

4 . We show how to obtain upper bounds bet-
ter than 3

4 , when we are allowed to choose more than one
point. In this subsection, we use the following terminol-
ogy. Let P be any n-point set in R3. We partition P by
three planes into eight subsets A1, . . . , A8, as shown in
Figure 1. We denote the intersection point of the three
planes by q0.

Theorem 4 ε3 ≤ 19
26 , ε4 ≤ 5

7 , and ε5 ≤ 11
16 .

Proof. We first prove that ε3 ≤ 19
26 . Using Theo-

rem 2, we partition P into eight subsets A1, . . . , A8 such
that each of A1 and A2 contains at most n

26 points,
and each of the subsets A3, . . . A8 contains at most
2n
13 points of P . Let q1 = centerpoint(A3 ∪ A5 ∪ A7)
and q2 = centerpoint(A4 ∪ A6 ∪ A8). We show that
Q = {q0, q1, q2} is a weak 19

26 -net for P .
Consider a convex set C that avoids Q. Since C does

not contain q0, it must avoid at least one of the eight
subsets A1, . . . , A8. Assume that C avoids A1. Since C
does not contain q1, by the property of the centerpoints
it contains at most 3

4 · 6n
13 points from A3 ∪ A5 ∪ A7.

Similarly, C contains at most 9n
26 points from A4 ∪A6 ∪

A8. Since C can contain all the n
26 points of A2, the

maximum total number of points that C contains is (2 ·
9
26 + 1

26 )n = 19n
26 .

Now, assume that C avoids one of the larger subsets,
say A3. It follows that C avoids all the 2n

13 points of A3

as well as 1
4 · 6n

13 points from A4 ∪ A6 ∪ A8. Thus, C
totally avoids ( 2

13 + 1
4 · 6

13 )n = 7n
26 points in this case.
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So, in any case, C can not contain more than 19n
26 points

of P , and hence, Q is a weak 19
26 -net for P .

Next, we prove that ε4 ≤ 5
7 . Here, we partition P

such that A1 and A2 each contains n
14 points, and the

other subsets A3, . . . A8 each contains n
7 points of P . Let

q1 = centerpoint(A3 ∪ A4), q2 = centerpoint(A5 ∪ A6),
and q3 = centerpoint(A7 ∪ A8). We show that the set
Q = {q0, . . . , q3} is a weak 5

7 -net for P .
Any convex set C that avoids Q must avoid at least

one of the eight subsets A1, . . . , A8. Two cases arise.
The first case is when C avoids one of the smaller sub-
sets, say A1. Since C does not contain q1, by the prop-
erty of the centerpoints it contains at most 3

4 ·
2n
7 = 3n

14
points from A3 ∪ A4. Similarly, C contains at most 3n

14
points from each of A5 ∪ A6 and A7 ∪ A8. Further-
more, C can contain all the points of A2. Therefore,
the total number of points that C contains is at most
(3 · 3

14 + 1
14 )n = 5n

7 points of P .
The second case is when C avoids one of the larger

subsets, say A3. Then C avoids all the n
7 points of A3

as well as 2 · 1
4 · 2n

7 points from A5 ∪ A6 and A7 ∪ A8.
Thus, C totally avoids ( 1

7 + 1
7 )n = 2n

7 points in this case.
Therefore, in both cases, C can not contain more than
5n
7 points of P .
To prove the upper bound ε5 ≤ 11

16 , we partition
the point set P into eight subsets of equal size, using
the eight-partition theorem. For 1 ≤ i ≤ 4, define
qi = centerpoint(A2i−1 ∪ A2i). Let Q = {q0, . . . , q4}.
Any convex set C that avoids Q avoids at least one of
the eight subsets, say A1. By the property of the cen-
terpoints, C contains at most 3

4 · n
4 = 3n

16 points from
each of A3 ∪A4, A5 ∪A6 and A7 ∪A8. Furthermore, C
can contain all the points of A2. Therefore, C contains
at most (3 · 3

16 + 1
8 )n = 11n

16 points of P , showing that
Q is a weak 11

16 -net for P . !

We can recursively use the construction for ε5 to ob-
tain a weak ε-net of size O(1/ε5) for 1

2 ≤ ε ≤ 1. In gen-
eral, this upper bound is weaker than the best known
upper bound O( 1

ε3 polylog 1
ε ) [3, 6]. However, for small

values of ε, the actual size of the weak ε-net constructed
by our method is smaller then the one constructed by
the previous general methods. For example, with i = 5
points we can get a weak 11

16 -net, while the previous
methods in [3, 6] need at least 9 points to obtain such
a weak ε-net.

Remark. Applying the method used in Theorem 4, we
can easily obtain two other upper bounds ε8 ≤ 2

3 and
ε9 ≤ 21

32 . For the bound ε8 ≤ 2
3 , we partition P such that

the two subsets A1 and A2 each contains n
6 points and

the other six subsets each contains n
9 points of P . The

set consisting of the centerpoint of A1∪A2 as well as the
centerpoints of the other six subsets plus the point q0

forms a weak 2
3 -net for P . For the bound ε9 ≤ 21

32 , we use

an eight-partition of P and then selects the centerpoint
of each subset as well as q0 to obtain the desired weak
21
32 -net.

4 Halfspace Ranges

In this section, we study εHi , where H is the family of
all halfspaces in R3. It is clear from the centerpoint
theorem that εH1 = 3

4 .

Theorem 5 3
5 ≤ εH2 ≤ 2

3 .

Proof. We first prove that εH2 ≤ 2
3 . Consider an n-

point set P ⊂ R3. Let W1 and W2 be two planes parallel
to the xy-plane that bound P , i.e. all the points of P lie
in between W1 and W2. Let P1 and P2 be the vertical
projections of P on W1 and W2, respectively. Define
q1 = centerpoint(P1) and q2 = centerpoint(P2). We
argue that the set Q = {q1, q2} is a weak 3

2 -net for P .
Let h be any halfspace that avoids Q. Define h1 =

h ∩ W1 and h2 = h ∩ W2. Let n1 be the number of
points of P1 contained in h1. Since h1 avoids q1, we
have by the property of the centerpoints that n1 ≤ 2n

3 .
Similarly, if n2 is the number of points of P2 contained
in h2, we have n2 ≤ 2n

3 . But, it is easy to see that h
contains at most max{n1, n2} points of P . Therefore,
h contains at most 2n

3 points, and hence Q is a weak
2
3 -net for P .

Now, we prove the lower bound εH2 ≥ 3
5 . To this aim,

for any n, we construct a set P of n points such that for
any pair of points p and q, there exists a halfplane that
avoids both the points p and q and contains at least 3

5n
points of P .

Figure 2 shows the construction of such a set P . Each
point in this figure represents a ball of sufficiently small
radius containing n

20 points. We denote this set of balls
by B, and refer to its members simply as the points of B.
The points of B are arranged in five groups, named a, b,
c, d and e, each containing four points on the boundary
or inside a tetrahedron T of unit side length. Each of the
outer four groups, a, b, d and e, consists of a point on a

b e

d

c

2

1

4
3

2

1
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a

Figure 2: The point set used to prove the lower bound
for εH2 .
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vertex v of T , as well as three points at distance δ from
v on the edges connecting v to the other three vertices
of T . The central group, c, consists of four points at
distance γ from the center of T on the lines connecting
the center to the four vertices of T . (In our example in
Figure 2, we have chosen δ = 1/10 and γ = 1/5).

We show that for any two given points p and q, there
is a plane H going through p and q, such that at least
12 points out of the 20 points of B lie in an open half-
space bounded by H. We may assume without loss of
generality that p and q coincide with two points of B.

Assume first that both p and q are in outer groups
of B, say in a and b. Consider the plane H that goes
through p and q, and is perpendicular to the face abe of
T . Then, it is easy to verify that the groups c, d and e
are fully contained in one side of H, and hence, H has
12 points in one side.

Now, assume that one of the points, say p, is in an
outer group, say in a, and the other point, q, is in the
central group, c. Two cases arise:

Case (1) p is the topmost point of a, i.e. p = a1 (see
Figure 2). If q ∈ {c1, c2}, then we choose H as the plane
that contains (p, q) and is parallel to the edge de of T .
We can easily see that two groups d and e as well as the
set {a3, a4, c3, c4} are fully contained in one side of H.
The case when q ∈ {c3, c4} is analogous.

Case (2) p is a side point of a, say a2. If q ∈ {c1, c2},
then the plane that contains (p, q) and is parallel to the
edge de has the entire groups d and e as well as the
set {a1, a3, a4, c3, c4} fully contained in one side. Now,
assume that q = c3. By choosing proper values for δ
and γ (as what are chosen in our example), we are sure
that the plane H going through three point p, q and
c4 contains the entire groups d and e as well as the set
{a1, a3, a4}. Now, we rotate H slightly around the line
pq such that c4 lies in the same side of H that the other
two groups d and e lie. Figure 3 shows the resulting
plane H that contains 12 points in one side. The case
when p = a2 and q = c4 is analogous. !

a
1

2 3
4

1

d

3
42

b
e

c

H

Figure 3: A plane H going through a2 and c3, containing
12 points in one side.

Theorem 6 εH3 = 1
2 .

Proof. We first prove that εH3 ≤ 1
2 . Consider an n-

point set P ⊂ R3. Let W be a plane that bisects P .
We project all the points of P into W to obtain a two
dimensional set P ′. Let Q be the set of vertices of a
triangle that bounds P ′. It is easy to verify that any
halfplane avoiding Q contains at most half the points of
P , and therefore, Q is a weak 1

2 -net for P .
To prove the lower bound, consider an n-point set

P ⊂ R3 in general position. For any given set of three
points Q, one of the two open halfplanes whose bound-
ing plane is incident to the points of Q contains at least
half the points of P , and hence, εH3 ≥ 1

2 . !

5 Conclusions

In this paper, we have presented several new upper and
lower bounds for εRi for the small values of i, where R is
the family of all convex sets, or the set of all halfplanes
in R3. The natural open question is whether we can
find alternative techniques for constructing weak ε-nets
to improve the upper bounds provided in this paper. In
particular, it is not possible to get any upper bound bet-
ter than the trivial 3

4 bound for ε2, using the techniques
currently used for constructing small weak ε-ntes. Re-
ducing the gap between the upper and the lower bound
for εH

2 given in Section 4 is also an interesting question
that remains open.
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