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Partitioning a regular n-gon into n + 1 congruent pieces is impossible
for sufficiently large n

Dania El-Khechen∗ Thomas Fevens∗ John Iacono†

1 Introduction

The interest in polygon decomposition emanates
from the theoretical importance of the problem on
one hand and the many applications that it has on
the other. The decomposition problem has been ex-
tensively studied in the literature and yet variations
of the problem remain open [3]. The existence of a
huge literature on this problem can be informally
explained by the fact that there are numerous ways
in which we can decompose a polygon and there are
many types of polygons to decompose. Decompo-
sition can be defined as partitioning a polygon into
components according to a set of rules. In other
words, each kind of decomposition has a set of con-
straints either on the type of the pieces, the num-
ber of pieces, the length of the cuts, the areas of
the partitions. In this paper, we discuss the follow-
ing problem posed by Joseph O’Rourke at the Fall
Workshop on Computational Geometry in 2004:

Is it possible to partition a regular n-gon into n+1
congruent pieces? It is obviously possible for the
equilateral triangle and the square as shown below.
However, is it ever possible for n ≥ 5?

The problem can be categorized as a special
tiling problem consisting of one single tile, generally
known as monohedral tiling [2], and where the area
of the tiling is finite and restricted to the bound-
ary of a regular n-gon. We begin by proving that
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no regular n-gon can be partitioned into n + 1 con-
gruent convex pieces each with ec boundary edges
for all ec ≥ 7, nor into hexagonal pieces when
n ≤ 6. The same result applies for congruent con-
cave pieces where no two interior angles sum up to
360◦. We then prove with a long case analysis
that no regular n-gon can be partitioned into n + 1
convex congruent pieces for ec = 3, 4, 5, 6, for suffi-
ciently large n. The proofs presented are necessarily
sketches due to space limitations. We conclude with
open problems.

2 Notation and definitions

We refer to [1] for different meanings of congru-
ence. Two polygons are properly congruent if they
are equivalent up to rotations and translations and
mirror congruent if they are equivalent up to mir-
ror reflection but not properly congruent and sim-
ply congruent if they are equivalent up to rotations,
translations and mirror reflections. In this paper we
use congruent unqualified to mean properly congru-
ent.

A partition of a polygon defines an embedded pla-
nar graph. We call a planar graph region regular if
all the faces have the same number of edges except
for the outer face. In the partition, a T-node is an
interior node of degree 3 with a 180◦ angle. A par-
tition of a regular n-gon is an edge-to-edge partition
if it is T-node free. Two angles are called circular
if they sum up to 360◦. A concave polygon is called
circularity-free if no two of its angles are circular.

For convenience, we call the regular n-gon the (or
more generally the polygon to be partitioned) the
large polygon and the congruent pieces that parti-
tion it the small polygons. We stipulate without
loss of generality that the large polygon is unit-
sided.

In a partition, some of the congruent small poly-
gons are embedded on the boundary of the large
polygon. They can be embedded to contain zero
or several consecutive unit-distant angles from the
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boundary of the large polygon. By consecutive unit-
distant angles (CUDA), we mean consecutive an-
gles congruent to the angles of the large polygon
( (n−2)180◦

n ) and that are unit distance apart by our
definition of the large polygon.

For the case analysis, we characterize a small
polygon of the partition according to the number of
consecutive unit-distant angles it contains from the
boundary of the large polygon. Therefore a small
polygon is said to be (ac, n)-CUDA if it contains ac

unit-distant angles consecutive on the boundary of
the large n-gon. Figure 1 shows examples.

A partition is said to be ac-CUDA if ac is the
CUDA number of its pieces and if there exists at
least one small polygon embedded with ac angles
on the exterior of the polygon. It is sufficient in
the case analysis to consider all CUDA values be-
cause every partition is ac-CUDA for some value of
ac. Two small polygons are said to be perfectly fit-
ting on the boundary of the large polygon when the
small polygons are adjacent to the boundary and to
each other with two supplementary angles.

In what follows, n denotes the number of sides of
the large polygon. In any assumed partitioning, let
nb be the Steiner points to be added on the border
of the large polygon, nm the Steiner points to be
added in the interior of the large polygon and ec the
number of edges of the small polygons. Trivially,
n ≥ 3 and ec ≥ 3.

3 Main Result

Euler part. Assume that the partitioning we
are seeking is an edge-to-edge convex or concave
circularity-free.

Our problem can then be stated as partitioning
the regular n-gon into n+1 pieces where each piece
is ec-sided. The partition will have the structure
of a region-regular planar graph with n + nb edges
on the outer face and ec(n+1)−n−nb

2 edges in the
interior.
Lemma 1. The number of Steiner points to add to
the large polygon in order to form the region-regular
graph is given by: 2nm + nb = ec(n + 1)− 3n
Proof: Proved by application of Euler’s formula
for planar graphs !

Lemma 2. nm + nb ≤ 2n
Proof: Proved by application of Euler’s formula
for planar graphs. !

E

A B C

D

Figure 1: Here we illustrate the CUDA values of
several examples of small polygons that are being
considered to tile a regular decagon. On each of
these polygons, a bold edge represents a unit dis-
tance edge, and a marked angle is an angle of a
regular decagon. Polygon E is (0, 10)-CUDA while
A, B, and D are (1, 10)-CUDA, and polygon C is
(2, 10)-CUDA

Lemma 3. No n-gon can be partitioned into n + 1
circularity-free ec-gons for ec ≥ n and n ≥ 6.
Proof: By Lemma 1, for ec ≥ n, if the large poly-
gon can be partitioned into n+1 convex or concave
2nm +nb ≥ n2−2n. By Lemma 2 and the previous
inequality, n2−2n−nm ≤ n2−4n ≤ nm +nb ≤ 2n.
However, n2 − 4n ≥ 2n for all n ≥ 6 which contra-
dicts the existence of such a partition. !

Lemma 4. No n-gon can be partitioned into n + 1
circularity-free ec-gons for ec ≥ 7 nor into 6-gons
for n < 6.
Proof: By Lemmas 1 and 2, in such a partition,
, ec(n + 1) − 3n − nm ≤ 2n and therefore ec(n +
1)− 3n− 2n ≤ 2n. The following inequality holds:
ec(n + 1) ≤ 7n However, the previous inequality
is not satisfied when ec ≥ 7 nor when n < ec

7−ec

for ec < 7. By hypothesis, ec ≥ 3. Hence the only
allowable values remaining are ec = 3, 4, 5, 6 for
which ec

7−ec
= 3

4 , 4
3 , 5

2 , 6. By hypothesis, n ≥ 3. The
only value for which n ≤ ec

7−ec
is when: ec

7−ec
= 6.

Proof of the lemma follows. !

If we remove the assumption that the partition
is edge-to-edge and let nc be the number of T-node
vertices, then the same results hold with slightly
different arguments. It is important to note that
from all the previous lemmas, it is implied that the
partitioning for the mentioned values of n or ec is
not possible for convex n-gons and for regular n-
gons since convex and regular n-gons are subclasses
of circularity-free n-gons.

Triangles through hexagons. By Lemmas 3 and
4, it remains to disprove that the partitioning is
not possible when ec = 3, 4, 5 for all values n and
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the case where ec = 6 for n ≥ 7. We proceed by
an case analysis based on the values of ec and n,
and also the CUDA numbers which vary between 0
and ec−2 and which depend on n. In what follows,
many arguments depend on n exceeding some con-
stant and this requirement is implicit in most of the
subsequent claims.

The following table shows how the CUDA-values
relate to our lemmas: each lemma proves that the
partitioning is not possible for the indicated CUDA
value.

ec CUDA ec CUDA
3 All Omitted 5 3+ Lemma 5
4 0 Lemma 11 6 0 Lemma 11
4 1 Omitted 6 1 Omitted
4 2+ Lemma 5 6 2 Omitted
5 0 Lemma 11 6 3 Lemma 13
5 1 Omitted 6 4+ Lemma 5
5 2 Lemma 13

(ec − 2)-CUDA partitions.
Lemma 5. For sufficiently large n, at least two
sides of the small polygons need to be longer than
the side of the large polygon.
Proof: For (ec − 2)-CUDA, the small polygon for
ec = 4, 5, 6 have one interior edge e to the large
polygon. The length of e is bounded by ec − 1 and
hence as n grows the area of the small polygon is
bounded by a constant. The proof of 5 implies that
no (ec − 2)-CUDA partitioning is possible. !

0-CUDA partitions. Before the proof itself that
no 0-CUDA partition is possible, we need a few
preliminary lemmas to establish the properties of
possible 0-CUDA partitions. We begin by show-
ing that small polygons can not be embedded with
two or more disjoint regions of incidence with the
large polygon in a 0-CUDA partition. We then rule
out 0-CUDA partitions for various different types
of embeddings, before presenting our main result in
Lemma 11 by arguing that we have ruled out all
possibilities.
Lemma 6. No small polygon can be incident to
two non-adjacent parts of the large polygon in a 0-
CUDA partition.
Proof: Proof omitted. !

Lemma 7. Given an outerplanar subgraph of G,
H, if there are at most k edges in G and not in H
from every vertex v in H, then there is a vertex in
H with degree at most k + 2 in G.
Proof: Follows immediately from the fact that all
outerplanar graphs have a degree two vertex. !

Figure 2: The outerplanar subgraphs chosen in
Lemmas 8 (left) and 9 (right) are shown. The illus-
trated partitions are not congruent, as this is not
possible. Left is the case when all small polygons
are incident to the large polygon. Here, the shaded
lines in the dual graph of the partition define an out-
erplanar subgraph, where every vertex correspond-
ing to a small polygon has degree 1 outside of this
subgraph. Right, the case where exactly one small
polygon in not incident to the large polygon is il-
lustrated. In this case, the cycle that defines the
outerplanar subgraph detours at the white vertices
in the dual to include the center small polygon ver-
tex. These white vertices are degree two outside
of the outerplanar subgraph, while the remaining
small polygons vertices have degree one.

This result through the appropriate choice of out-
erplanar subgraphs gives the following lemmas:
Lemma 8. If all small polygons are incident to the
boundary of the large polygon, there can only be a
0-CUDA partition if ec = 3.
Proof: Since Lemma 6 prohibits small polygons
from being incident to non-consecutive parts of the
boundary of the large polygon, in the dual graph
of any 0-CUDA partition where all small polygons
are incident to the boundary there is a cycle among
vertices representing the small polygons in the dual
graph. This circuit and the edges inside form an
outerplanar subgraph of the dual graph. Thus,
Lemma 7 can be applied. Noting that the only
edges exterior to the circuit in this graph are inci-
dent to the exterior vertex, we can conclude that all
vertices on the circuit have degree at most 1 outside
of the circuit. Thus, according to Lemma 7, there
is a vertex on the circuit of degree 3. This corre-
sponds to requiring that at least one small polygon
must have at most 3 neighboring regions, which im-
plies the small polygon is a triangle. !

Lemma 9. If all small polygons are incident to the
boundary of the large polygon except one, and all
the vertices of the large polygon have at least degree
3, then ec ≤ 4
Proof: The proof proceeds identically as in the
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previous lemma, except for the choice of circuit. !

Lemma 10. There does not exist a 0-CUDA parti-
tion where ec = 4 and all but one small polygon is
incident to the large polygon.
Proof: Proof omitted. !

Lemma 11. If the small polygon is 0-CUDA then
in any partition ec $= 4, 5, 6.
Proof: Lemma 6 assures us that in any 0-CUDA
partition, small polygons can not be incident to the
large polygon in two disjoint parts of the boundary.
Since small polygons in a 0-CUDA partition can
not have any angles superimposed on the angles of
the large polygons, that means that small and large
polygons can be incident at most at a single unit
edge. As there are n such unit edges on the large
polygon, and n + 1 small polygons to embed inside
with these restrictions, any valid partition can have
at most one small polygon that is not incident to
the large polygon. From Lemmas 8 and 9 we can
rule out all possibilities of partitioning except for
when ec = 4 and there is one inside small polygon.
Lemma 10 shows this case can not occur. !

Pentagons 2-CUDA and Hexagons 3-CUDA pari-
tions. Here we prove that 2-CUDA partitions with
pentagons and a 3-CUDA partitions with hexagons
are not possible.
Lemma 12. For c = 2, 3, any regular n

c -gon in a
regular unit-sided n-gon has O(1) sized sides.
Proof: Proved by straightforward trigonometry. !

Lemma 13. No n + 1 (ec − 3)-CUDA congruent
partitioning of a large polygon exists when ec = 5, 6.
Proof: For ec = 5, two cases need to be considered
for a 2-CUDA partition where the boundary of the
large polygon is embedded as shown in Figure 3 (a)
or (b): when the pieces perfectly fit on the boundary
of the large polygon and when they don’t. In the
former case, we have two subcases depending on
whether n is even or odd. When n is even, n

2 pieces
are adjacent to the boundary of the large polygon
which forms a regular n

2 -gon in the interior with
n
2 + 1 remaining pieces to complete the partition,
see Figure 3 (a).
The argument is based on which angles of the con-
gruent pieces can fit in the regular n

2 -gon angles.
Trivially, none of the two consecutive angles con-
gruent to the large polygon (the CUDA angles) can
be embedded. This leaves 3 angles: α, β and γ
shown in Figure 3 (a). Let one of the angles of

!

" #

$
!

Figure 3: Perfectly fitting pentagons, even and odd

the regular n
2 -gon be δ. α and γ are supplementary

angles and thus any combination of them cannot
be embedded in δ. Lemma 5 ensures that the two
internal sides of the pentagon get arbitrarly large.
A combination of α and γ or β and γ or of γs can-
not be embedded in δ because the two internal sides
grow arbitrarly with n while the side of the regular
n
2 -gon is O(1) by Lemma 12. For the case where n
is odd, the same argument about angles with long
sides holds. It is impossible to embed only one of
the consecutive large polygon angles of the small
polygons in ω because there is no room for its unit-
away adjacent angle. Similar arguments show that
the partitioning where the small polygons do not fit
perfectly on the boundary is not realizable. Similar
proofs hold for 3-CUDA for ec = 6. !

Summary. All previous lemmas yield:
Theorem 14. No regular n-gon can be partitioned
into n + 1 congruent convex for sufficiently large n.

It remains open whether the partitioning is pos-
sible with congruent concave pieces with circular
angles for ec ≥ 7, the partitioning is possible with
all classes of concave pieces for ec = 4, 5, 6 and for
all types of congruence and if the partitioning is
possible for mirror congruence with convex pieces
for ec = 4, 5, 6.

Acknowledgments We would like to thank Joseph
O’Rourke for posing this problem to us at the Fall Work-
shop on Computational Geometry in 2004. We would also
like to thank Alessandro Zanarini for useful discussions in the
preliminary stages of the paper. The first and third author
would like to thank Perouz Taslakian for facilitating their
collaborative efforts.

References

[1] Kimmo Eriksson. Splitting a polyon into congruent
pieces. American Mathematical Monthly, 103:393–400,
1996.

[2] G. Grunbaum and G.C. Shephard. Tilings and Patterns.
W.H. Freeman and Company, 1988.

[3] J. Mark Keil. Polygon Decomposition, chapter 11. Else-
vier Science B. V, 2000.

176                                       




