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Capturing crossings: Convex hulls of segment and plane intersections
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Abstract

We give a simple O(n log n) algorithm to compute the
convex hull of the (possibly Θ(n2)) intersection points
in an arrangement of n line segments in the plane. We
also show an arrangement of dn planes in d-dimensions
whose arrangement has Θ(nd−1) intersection points on
the convex hull.

1 Introduction

Over 20 years ago, Ching and Lee [4] showed that the di-
ameter of the finite vertices of an arrangement of n lines
could be computed in Θ(n log n) time, thanks to their
observation that the extreme vertices are intersections
of lines that are adjacent in slope order. (This is despite
the fact that there are potentially Θ(n2) vertices in an
arrangement.) Atallah [2] separately used it to compute
the convex hull in the same time. This observation does
not apply to arrangements of line segments, however;
we know of no equivalent algorithm published for the
convex hull of the crossings in an arrangement of n line
segments.

It is easy to observe that only crossings that are ex-
treme on all defining segments can be hull vertices, and
that there are at most n candidate crossings. The chal-
lenge is to efficiently find the extreme crossings, or a
small superset. We employ a “clipping sweep” in two
ways: first to reduce to intersecting two families of dis-
joint segments, then to solve this special case. Thus, we
establish:

Theorem 1 Given n line segments in the plane, one
can find the convex hull of their intersection points in
Θ(n log n) time.

The lower bounds for the problem, and for the subse-
quent subproblems, follow easily from element unique-
ness, in the same manner as the lower bound of Ching
and Lee [4].

One way to find the hull vertices in the plane using ex-
isting machinery is to build the outer face in an arrange-
ment of segments, which has Θ(nα(n)) complexity and
can be constructed in O(nα(n) log n) expected time [7],
or in worst-case O(nα2(n) log n) time [1]. Both algo-
rithms are of substantially greater programming com-
plexity than ours, which is a simple modification of the
classic Bentley-Ottmann sweep algorithm for intersect-
ing segments [3].

Although curiosity was our primary motivation, re-
searchers from pattern recognition looking for concise
descriptors of lines have studied hulls of random line ar-
rangements [6, 9], and “envelopes of lines,” which are
the union of all finite cells in line arrangements [8, 10,
12].

We also consider the problem of planes in higher di-
mensions, and show a lower bound:

Theorem 2 The convex hull of the finite vertices in an
arrangement of n planes in d dimensions, where d is a
fixed constant, can have Θ(nd−1) vertices.

2 Preliminaries

Our input is a finite set of segments, whose endpoints
can be specified to be included or not. (Segments may
be relatively closed, open, or half-open.) We will not
assume distinct endpoints or distinct slopes, but will de-
fine an intersection point as the intersection of segments,
at least two of which have different slopes. Thus, the set
of all intersection points is a finite set of distinct points,
which may include segment endpoints, but need not. In
particular, segments on the same line do not contribute
intersection points, except as segments of other slopes
intersect them.

We may assume, by a change of coordinates if neces-
sary, that no line segment is vertical. This allows us to
order intersection points on a segment from left to right,
and to speak of the left and right extreme intersection
points. An intersection is doubly extreme if it is extreme
on at least two segments.

Lemma 3 Any intersection point that is a vertex of the
convex hull is extreme on all of its segments.

The left tail of a segment is the portion from the left
endpoint to the left extreme intersection point, or to the
right endpoint if the segment has no intersection point.
Note that the left tail degenerates to a single point if
the left endpoint is also an intersection point. Simi-
larly, the right tail is defined from the right endpoint to
right extreme (or left endpoint). The only intersection
between tails on different lines can be at their extreme
ends, which are then doubly extreme. It is enough to
find a small superset of the intersections of tails, since
we can compute the convex hull of n points in Θ(n log n)
time.
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3 Clipping sweep to find and intersect
tails

Our basic tool is a clipping version of Bentley-
Ottmann’s plane sweep [3] for finding segment inter-
sections. Whenever we encounter an intersection as we
sweep from left to right, we clip all, or all but one,
segments at that intersection and discard the unswept
portion(s) to the right. (If we encounter overlapping
collinear segments during the sweep, we keep only the
segment extending furthest to the right, and clip the
rest.)

Lemma 4 A left-to-right clipping sweep on O(n) seg-
ments runs in O(n log n) time. It returns O(n) inter-
section points, and a set of non-crossing segments that
has all left tails as a subset.

Proof. We assume familiarity with the analysis of the
Bentley-Ottmann sweep, which can be found in several
textbooks [5, 11].

Since each intersection ends a segment, there are at
most O(n) intersection points. Moreover, since at most
one segment continues beyond the intersection point,
there are no crossings in the output. The sweep will thus
process O(n) intersection point and end point events.
Each event involves O(1) operations in a priority queue
that holds O(n) elements, establishing the running time
bound. Finally, since each segment enters the sweep at
its left endpoint and continues until some intersection
(possibly after the leftmost) or a containing collinear
segment or the right endpoint is found, a segment is
returned that includes the left tail. �

Let us first use this tool to solve a simpler, red/blue
subproblem:
Corollary 5 Given n red and n blue line segments,
with no red/red or blue/blue crossings, we can find the
at most n intersection points that are left extreme on
red segments in Θ(n log n) time.

Proof. Perform a clipping sweep from left to right, clip-
ping red segments at each intersection detected, and
leaving blue segments unclipped. �

Finding the intersections of all tails can be reduced
to an instance of the red/blue subproblem.
Lemma 6 In Θ(n log n) time we can find a set of O(n)
intersection points that includes the intersection points
of all tails.

Proof. Perform two clipping sweeps, one from the left
and one from the right, that clip all segments at an
intersection. By Lemma 4, the left-to-right sweep re-
turns a set of non-crossing segments that we’ll color red
– these segments include the left tails. The intersection
points found, therefore, include all intersections of two
left tails – all left/left extreme points.

Similarly, the right-to-left sweep returns a blue set of
non-crossing segments that contains the right tails, and

reports intersections that include all right/right extreme
points.

Applying Corollary 5 to these red and blue segments
produces a set containing all left/right extreme points.
Since each sweep produces a linear number of points,
the lemma is established. �

This also completes the proof of Theorem 1.

4 Hulls of arrangements in d
dimensions

For planes in d dimensions, we define an intersection
point to be the intersection of d planes that do not con-
tain a common line. Because any d−1 planes in general
position intersect in a common line, any line contributes
at most the two extreme intersections to the convex hull,
and any hull vertex is extreme on at least d lines, if we
have n planes, then we have at most 2

d

(
n

d−1

)
vertices on

the convex hull.
Since we usually think of d as a constant and n ≥ d

growing asymptotically, we will assume that n is even
and define a family of dn planes with Ω(nd−1) intersec-
tions on the convex hull. First, let us sketch the idea in
three dimensions, where it is easier to visualize. Imagine
on the z = n plane an integer grid n/2 ≤ x, y < 3n/2,
which can be formed as the intersection of two families
of n planes, one containing the x axis and one contain-
ing the y axis. A third family goes from (0,0,1/6) to
cut the middle n diagonals of this grid; this places a
quadratic number of intersections on the z = n plane,
and the slopes of intersection lines are such that all other
intersections are below the z = n/2 plane. Finally, to
make the grid lie on a convex surface instead of a plane,
the slopes of planes containing the axes are perturbed
slightly.

The figure on the next page illustrates the construc-
tion for 3 families of n = 30 planes each, marking inter-
sections with faint “+” signs and convex hull vertices
with darker circles. The full paper gives coordinates
and details of the proof; we include only the coordi-
nates here, for the benefit of those who would like to
construct this example themselves.

In dimension d, we can represent planes as (d + 1)-
tuples in homogeneous coordinates so that that plane
π = (π0, π1, . . . , πd) contains the Cartesian points p that
satisfy π0 + (π1, . . . , πd) · p = 0. Scalar multiples of a
tuple denote the same plane, so although we use rational
numbers, we could clear fractions and use integers of
O(log n) bits instead.

For i = 1 . . . d − 1, we define family πi with planes
indexed by j = n/2 . . . 3n/2 having nonzero coordi-
nates πi,j

i = dn and πi,j
d = −j + 1/(2dj). For ex-

ample, the last plane of the first family is π1,3n/2 =(
0, n, 0, . . . , 0,−3n/2 + 1/(3dn)

)
. We define the final

family for k = (d−3/2)n . . . (d−1/2)n as ρk =
(
−k, 1−
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Figure 1: Two views of all intersections between 3 families of 30 planes each; circles indicate convex hull vertices.

2dn, 1−2dn, . . . , 1−2dn, 2dk
)
. As mentioned above, the

full paper includes details that establish Theorem 2.
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