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On the Fewest Nets Problem for Convex Polyhedra
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Abstract

Given a convex polyhedron with n vertices and F faces,
what is the fewest number of pieces, each of which un-
folds to a simple polygon, into which it may be cut by
slices along edges? Shephard’s conjecture says that this
number is always 1, but it’s still open. The fewest nets
problem asks to provide upper bounds for the number of
pieces in terms of n and/or F . We improve the previous
best known bound of F/2 by proving that every convex
polyhedron can be unfolded into no more than 3F/8
non-overlapping nets. If the polyhedron is triangulated,
the upper bound we obtain is 4F/11.

1 Introduction

The classic problem whether a convex polyhedron can
be cut along edges and unfolded on a plane into a non-
overlapping net is still open. While this classic problem
goes back to Albrecht Dürer [6] in the 16th century, the
first formal description of the problem is due to Shep-
hard [11], who in 1975 stated the following:

Conjecture 1 Every convex polyhedron can be cut

along edges and unfolded into a non-overlapping net.

The above statement is false for non-convex polyhedra.
An example of an ununfoldable polyhedron can be
found in [2].
If the constraint of unfolding the polyhedron into a
single connected piece is loosened, we obtain the fewest
nets problem, which was proposed by Joseph O’Rourke
[4] at the Canadian Conference in Computational
Geometry CCCG 2003:

The Fewest Nets Problem Given a convex
polyhedron of n vertices and F faces, what is the fewest
number of pieces, each of which unfolds to a simple
polygon, into which it may be cut by slices along edges?
Provide an upper bound as a function of n and/or F .

Shephard’s Conjecture states that this number is
always 1, but it is still open. The trivial upper bound
F can be obtained by cutting out each face. If the
polyhedron is simplicial (every face is a triangle), the
dual graph of the polyhedron is a cubic bridgeless
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graph, therefore by Peterson’s theorem, it has a perfect
matching. Then pairs of matched triangular faces will
unfold without overlap, which leads to F/2 pieces.
If the polyhedron is simple (every vertex has degree
3), the dual graph is planar and triangulated, therefore
by a result due to Biedl et al. [3], it has a matching
of size (F + 4)/3. Then pairs of matched faces will
unfold without overlap, and the number of unmatched
faces will be at most (F − 8)/3. This leads to at most
(F + 4)/3 + (F − 8)/3 = 2/3(F − 2) pieces.
The first bound for general polyhedra was obtained
by Michael Spriggs (personal communication to E.
Demaine and J. O’Rourke - see Chapter 22 of [5]),
who established in 2003 that all convex polyhedra
can be unfolded into 2F/3 non-overlapping nets. His
argument depends on a result by D. Barnette [1] that
every 3-connected planar graph has a spanning tree of
maximum degree 3. Then by using this result for the
dual graph of the polyhedron (which is 3-connected
and planar according to Steinitz’s Theorem), one can
match some of the faces by plucking them off from
the leaves of the spanning tree, and obtain a bound
of 2F/3. The smallest bound obtained so far is F/2,
and it was obtained by Vida Dujmovic, Pat Morin and
David Wood in 2004.(personal communication to E.
Demaine and J. O’Rourke - see Chapter 22 of [5]) In
this paper we use graph domination to show that every
convex polyhedron can be unfolded into no more that
3F/8 non-overlapping nets. For simplicial polyhedra,
the upper bound we obtain is 4F/11. In Section 2 we
generalize the volcano unfolding of domes from [5].
The graph theoretic results on graph domination that
we are using in our proofs are presented in Section 3,
and the main results are presented in Section 4.

2 Volcano Unfoldings

We define a polyhedron to be a connected set of closed
planar polygons called faces in the 3-dimensional space
such that: (1) the intersection of two faces is a set of
vertices and edges common to both polygons (2) every
edge is shared by at most two faces. All polygons in this
paper are considered closed i.e. every edge is shared by
exactly two faces. We will denote the faces of the poly-
hedron by A, B, C, . . ., and the vertices by u, v, w, . . ..
An edge bounded by vertices u and v will be denoted
by uv. For any face A of a polyhedron, πA will be the
plane that contains the polygon A. A polyhedron is
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convex if its interior is a convex set i.e. for any points
u and v interior to the polyhedron, the segment uv is
interior. If a polyhedron is convex, then for any distinct
faces A and B, all the points of A that are not in B
are on the same side of the plane πB. For any face A
of a polyhedron we will denote by N [A] the subcomplex
of the polyhedron induced by A and the faces adjacent
to A. N [A] can be unfolded by cutting along its edges,
except the edges that bound A. We will call this the
volcano unfolding of N [A]. This unfolding blows out
all the faces adjacent to A around A. In this section
we will prove that if a polyhedron is convex, then the
volcano unfolding of N [A] is nonoverlapping. This gen-
eralizes the volcano unfolding of domes from Chapter
22 in [5]. (a dome is a polyhedron with a distinguished
face called base, such that all nonbase faces are adjacent
to the base.)

Theorem 1 Let A be any face of a convex polyhedron.

Then the volcano unfolding of N [A] is nonoverlapping.

Proof. Let’s assume that there exists a convex polyhe-
dron, such that for some face A, the volcano unfolding
of N [A] is overlapping. Let B and C be two faces ad-
jacent to A that would overlap in the volcano unfolding
of N [A]. If A, B , and C share a common vertex v, let
α, β, and γ be the measures of the interior angles at v
in faces A, B , and C respectively. Since the curvature
of the polyhedron at v is positive, α + β + γ < 360◦,
therefore B and C cannot overlap. (see Figure 1.)
Otherwise, let uv be the edge that faces A and B share,
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Figure 1: Faces B and C will not overlap when they
share a vertex v.

and let wx be the edge that faces A and C share. Then
u, v, w, and x are distinct and the quadrilateral �uvwx
is convex. If lines←→uv and←→wx are parallel, then it is easy
to see that faces B and C cannot overlap. (see Figure
2.) If lines←→uv and←→wx intersect, then let y be their point
of intersection. (see the 3D Figure 3.) Since the planes
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Figure 2: An unfolding of faces B and C on the plane
πA when ←→uv ‖ ←→wx.
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Figure 3: A polyhedron where lines←→uv and←→wx intersect.

that contain faces B and C have y in common, they
must have a line in common. If l = πB ∩ πC , let z be
another point on l such that z is on the same side of the
plane πA as the polyhedron.(see Figure 4.) Since the
polyhedron is convex, all the points on face B should
be on the same side of the planes πA and πC , therefore
they should be in the interior or on the boundary of
angle ∠uyz. Similarly the points on face C of the poly-
hedron should be in the interior or on the boundary of
angle ∠wyz.

Let α, β, and γ be the measures of the angles ∠uyw,
∠uyz, and ∠wyz. Then α+β +γ < 360◦. Let z′ and z′′

be the points that correspond to z in the unfolding of
faces B and C on the plane πA respectively. Since α +
β + γ < 360◦, the interior of angles ∠uyz′, and ∠wyz′′

are disjoint, therefore faces B and C cannot overlap.
(see Figure 5.)

�

Since all the nonbase faces of a dome are adjacent to the
base we obtain the following corollary previously proved
in Chapter 22 of [5]:
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Figure 4: If the planes πA, πB and πC meet at point y,
then α + β + γ < 360◦.
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Figure 5: An unfolding of faces B and C on the plane
πA when lines ←→uv and ←→wx intersect.

Corollary 2 All domes can be unfolded into one

nonoverlapping net.

Observation 1 If the polyhedron is simplicial, then

faces A, B, and C always meet at some vertex v, so

the statement from Theorem 1 holds even if the polyhe-

dron is not convex.

3 The Domination Number of a Graph

Given a graph G = (V, E), a set of vertices S is called
a dominating set if every vertex in V is either in S or

is adjacent to a vertex in S. The domination number

γ(G) is the minimum cardinality of a dominating set
of G. For example, sets {v, y} and {u, x, z} are domi-
nation sets for the graph in Figure 6. The domination
number of this graph is 2. Determining whether a graph
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Figure 6: A graph with domination number 2.

has domination number at most k is NP-complete [7].
However, graphs with high minimum degree δ(G) have
small domination numbers. In 1996 Reed [10] proved
the following result:

Theorem 3 If G = (V, E) is a connected graph of order

n and δ(G) ≥ 3, then γ(G) ≤ 3n/8.

The upper bound provided by Reed is sharp. Reed [10]
also conjectured that if the graph is cubic (i.e. every
vertex has degree 3), then the domination number is
at most dn/3e. Kostochka and Stodolsky [9] disproved
this conjecture and found the following upper bound for
cubic graphs:

Theorem 4 If G = (V, E) is a connected cubic graph

of order n > 8, then γ(G) ≤ 4n/11.

4 Main Theorems

In this section we will use dominating sets in the dual
graph of a polyhedron to find new upper bounds for the
number of non-overlapping nets a convex polyhedron
can be unfolded into. Here is our main result:

Theorem 5 Every convex polyhedron with F faces can

be unfolded into no more than 3F/8 non-overlapping

nets.

Proof. Let’s consider a convex polyhedron with F
faces, and let G = (V, E) be its dual graph. Then G
has F vertices. Since every face of the polyhedron has
at least three edges, δ(G) ≥ 3. Moreover G is connected,
therefore by Theorem 3 we obtain γ(G) ≤ 3F/8. Let
A1, A2, . . . , Ak be the faces that correspond to a min-
imum dominating set for G. Then k ≤ 3F/8. Then
we can partition the set of faces of the polyhedron in
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S1 ∪ S2 ∪ . . . ∪ Sk, where the sets S1, S2, . . . , Sk can be
obtained from the following algorithm:

S0 := {A1, A2, . . . , Ak}
for i := 1 to k
Si := Ai ∪ {A : A is adjacent to Ai and A /∈ S0}
S0 := S0 ∪ Si

Since Si ⊆ N [Ai], by Theorem 1 the volcano unfolding
of the faces in Si produces a non-overlapping net. This
leads to an unfolding into k ≤ 3F/8 non-overlapping
nets. �

If the polyhedron is simplicial, then the dual graph is cu-
bic. An argument similar with the previous proof, com-
bined with Theorem 4 provides an unfolding of the poly-
hedron into no more than k ≤ 4F/11 non-overlapping
nets. Note that according to Observation 1 the volcano
unfolding produces non-overlapping nets even for non-
convex polyhedra. Therefore we obtain the following:

Theorem 6 Every simplicial polyhedron with F faces

can be unfolded into no more than 4F/11 non-

overlapping nets.

5 Conclusion

The domination number in the dual graph of the poly-
hedron was a key ingredient in the proof of our main
results. While the upper bound for the domination
number provided by Reed’s theorem is sharp, all the
known examples of graphs that have the domination
number equal to 3n/8 are nonplanar. Establishing
sharp upper bounds for the domination number in
planar 3-connected graphs would improve the result
from Theorem 5. A similar result for planar cubic
graphs would improve the result from Theorem 6.
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[6] Albrecht Dürer The Painter’s Manual: A Manual

Measurement of Lines, Areas and Solids by Means of

Compass and Ruler Assembled by Albrecht Dürer for

the Use of All Lovers of Art with Appropriate Illus-

trations Arranged to be Printed in the Year MDXXV,
Abaris Books, Inc., New York(1977). English Trans-
lation of Unterweisung der Messung mit dem Zirkel

und Richtscheit in Linien, Ebenen und Ganzen Körpern

(1525)

[7] M. Garey and D. Johnson Computers and Intractabil-

ity: A Guide to the Theory of NP-Completeness, W. H.
Freeman(1979).

[8] T. Haynes, S. Hedetniemi and P. Slater Fundamen-

tals of Domination in Graphs, Marcel Dekker, Inc. New
York(1998).

[9] A.V. Kostochka and B.Y. Stodolsky An Upper Bound
on the Domination Number of n-Vertex Connected Cu-
bic Graphs, preprint, (2007).

[10] B.A. Reed Paths, Stars and the Number Three, Comb.

Probab. Comput., 5(1996), no. 3, 277–295.

[11] G.C. Shephard Convex Polytopes with Convex Nets,
Mathematical Proceedings of the Cambridge Philosoph-

ical Society, 78(1975), no. 3, 389–403.


