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Computing a planar widest empty α-siphon in o(n3) time
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Abstract

Given a set of n points P in the Euclidean plane, we consider

the problem of locating a 1-corner polygonal chain X such

that minp∈P d(p, X) is maximized. The polygonal chain has

the added property that its interior angle is α and it parti-

tions P . In this note we present an algorithm that solves the

problem in o(n3) time and space. The previous best running

time for this problem was O(n3 log2 n) time [2].

1 Introduction

Let P = {p1, p2, . . . , pn} be a set of points in the
Euclidean plane. An empty corridor through P is
an open region partitioning P , which is bounded
by two parallel lines such that no points of P lie in
the region. A corridor of radius r is represented by
R(l, r) where l is the axis of the corridor. Bereg et
al. [2] proposed a corridor, called a siphon, where its
axis is a 1-corner polygonal chain consisting of two
half-line links. They proposed an O(n3 log2 n) time and
O(n log n) space solution to the widest empty α-siphon
problem where the axis of the α-siphon has the interior
angle α. When α is not specified, the widest empty
siphon problem is solvable in O(n4 log n) time requir-
ing O(n) space [3]. Other variations of the corridor
problem have been proposed (see [2] for the references).

We show for the first time that the widest empty α-
siphon problem can be solved in o(n3) time. We show
that the feasibility problem of determining if there ex-
ists an empty α-siphon of radius r can be solved in
O(n2 log3 n) time using O(n2 log2 n) space. Later we
show that this sequential algorithm for the feasibility
problem is parallelizable. The sequential algorithm for
the feasibility problem is described in section 2. Section
3 discusses the parallel implementation of the sequential
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algorithm. The conclusions and extensions are discussed
in section 4.

2 Feasibility problem

Suppose that w(v) represents the axis of α-siphon where
w(v) is a 1-corner polygonal chain consisting of two half-
lines starting at v and makes an angle α at v. For the
terminologies please refer to Fig. 1. The α-siphon of
radius r is denoted by R(w(v), r) where the two bound-
aries are called inner and outer boundaries. The inner
boundary consists of cw and ccw half-line links, and the
outer boundary consists of a circular segment and two
half-line links, cw and ccw. The axis w(v) also consists
of two half-line links, called cw and ccw links.
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Figure 1: Identifying the various terms of R(w(v), r).

The feasibility problem can be formalized as follows.
Given a set P of n points in the plane, a fixed value α,
0 ≤ α ≤ π, and a positive real value r, does there exist
an α-siphon with radius r such that no points of P lie
in its interior and it partitions P? This is equivalent to
determining the existence of a 1-polygonal chain w(v)
with interior angle α such that w(v) partitions P and
the open region R(w(v), r) is empty.

The following lemma characterizes the α-siphon we
are looking for.

Lemma 1 If the answer to the feasibility problem is “yes”,
there exists an empty α-siphon of radius r with the following
properties. (a) The outer boundary of the α-siphon contains
a data point. The point could lie on either the cw link, ccw
link or circular segment. (b) Both the cw and ccw links of
the interior boundary of the α-siphon contain a data point.
It is possible for the same data point to lie on both the links.

For the sake of simplicity, we first assume that α = π
2 .

We assume that the angle of the cw link of w(v) lies
between 0 and π

2 , and therefore, the angle of the ccw
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link of w(v) lies between π
2 and π. We also assume that

if the data point on the outer boundary does not lie on
the circular segment, it lies on the ccw link. Clearly, all
the remaining cases are very similar.

2.1 Data point lying on the circular segment

Let Cr(P ) denote the set of circles of radius r with cen-
ters located at the points of P . We are now interested
in finding a 1-corner polygonal chain w(v) such that its
cw link touches a circle of Cr(P ), its ccw link touches a
circle of Cr(P ) and its corner point v lies on the bound-
ary of a circle of Cr(P ) (see Fig. 1(a)). We also need
to make sure that w(v) partitions P and the open re-
gion R(w(v), r) is empty (i.e. w(v) does not intersect
the interior of any circle of Cr(P )). The circle on the
boundary of which v lies is called the starting circle
for both the cw and ccw links. We always assume that
when a link touches a circle, the center of the circle lies
below the link.

Our solution methodology consists of two parts. In
the first part we implicitly enumerate all the candidate
cw and ccw links, and in the second part we combine
the links to construct the axis w(v) of a valid siphon,
if it exists. A candidate cw link is a half-line f whose
starting point lies on the boundary of a circle of Cr(P )
and is tangent to another circle of Cr(P ), and the open
region R(f, r) is empty. We also make sure that the an-
gles of the candidate cw links lie in [0, π] and the angles
of the candidate ccw links lie in [π

2 , π]. We now describe
the method to enumerate the candidate cw links only.

Let p be any point of P . Consider the circle c2r(p) of
radius 2r which is centered at p (see Fig. 2). Let l0 be
the horizontal line through p. Let lT0 be the line which
is parallel to l0 and is tangent to the circle c2r(p) above
p. Let B(l0) be the set of points lying in the open region
of the strip S(l0) where l0 and lT0 are the two bounding
lines of the strip. Let m(l0) be the axis line of the strip
S(l0). Let v be the leftmost intersecting point of m(l0)
with the convex hull of the circles of Cr(B(l0)). If B(l0)
is empty then v is set to a point at infinity. We assume
without any loss of generality that there always exists
at least one point inside the rotating strip. Let v lie
on the boundary of circle cr(q). Now if the half-line
along m(l0), starting at v and avoiding the circles of
Cr(B(l0)) also touches the circle cr(p), then according
to our definition the half-line is a candidate cw link.
This candidate cw link is denoted by h(p, q, 0).

Suppose that the half-line h(p, q, 0) is a candidate
cw link. Suppose now that the strip S(l0) is rotated
counter-clockwise around p by angle θ such that the set
B(lθ) remains unchanged, i.e. B(lθ) = B(l0) (see Fig.
2). In this case, there exists a starting circle cr(q) of
Cr(B(lθ)) such that h(p, q, θ) is a candidate cw link. As
a matter of fact, for any φ ∈ [0, θ], Bl0 = Blφ , and
there exists a starting circle cr(q′) of Cr(Bl0) such that
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Figure 2: Generating candidate cw links touching p

h(p, q′, φ) is a candidate cw link.
We now describe our algorithm to determine all the

candidate cw links, all of which touch the circle cr(p).
Let S(lθ) be the strip whose inner (bottom) line has an-
gle θ and goes through p. The sweep starts at θ = 0 and
ends when θ = π

2 . We keep track of the set B(lθ) ⊂ P
of points lying in the interior of the strip S(lθ+ε), for
arbitrarily small ε. We maintain the convex hull of
the circles determined by B(lθ). Whenever an event
takes place, such as when a point is added to or deleted
from B(lθ), the convex hull of Cr(B(lθ)) is updated and
the half-line h(p, q, θ) where q is the left most circle of
Cr(B(lθ)) that the axis line m(lθ) of S(lθ) intersects, is
determined. If h(p, q, θ) touches the circle cr(p), it is a
candidate cw link and is stored in a list Hp as a 4-tuple
(p, q, θ, continueflag) where the first two items of the
tuple indicate the touching and the starting circles re-
spectively, and θ indicates the angle of the half-line. The
continueflag is set true if h(p, ∗, lθ+ε) is still a candidate
cw link for arbitrarily small ε. Consider two consecu-
tive candidate cw links (p, q1, θ1, b1) and (p, q2, θ2, b2),
where b1 and b2 are boolean flags and θ1 < θ2. If b1

is set false, we can conclude that there is no candidate
cw link whose angle lies in (θ1, θ2). If b1 is set true, for
any θ ∈ [θ1, θ2], there exists a candidate cw link whose
angle is θ. Suppose now that b1 is true. If q1 = q2, all
the candidate cw links whose angles lie in [θ1, θ2] have
the same starting circle and the same touching circle.
We output this interval as (p, q1, θ1, θ2). If q1 6= q2, the
candidate cw links whose angles lie in [θ1, θ2], do not
have the same starting circles. We divide the interval
[θ1, θ2] into subintervals such that the starting circle and
the touching circle for the candidate cw links in each
of these subintervals do not change. We output these
subintervals along with their starting and touching cir-
cles information. Let Lp denote the list of all 4-tuples
determined from Hp.

Let Lcw = ∪i=n
i=1Lpi . Clearly Lcw can be determined

in O(n2 log n) time. Each element (p, q, θ1, θ2) of Lcw

represents a type of cw link where for any angle θ ∈
[θ1, θ2] there exists a candidate cw link whose angle is
θ and the starting and touching circles are cr(p) and
cr(q) respectively. In a similar way we can compute the
list Lccw of candidate ccw links whose angles lie in the
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range [π
2 , π].

In the second part, we need to find an angle ω such
that there exist touching circles cr(p) and cr(p′), and a
point v on a starting circle cr(q) where the candidate
cw link, h(p, q, ω), and ccw link, h(p′, q, ω + π

2 ) start
from the same point v (see Fig. 1(a)). It is easy to see
that the resulting π

2 -siphon is empty and also partitions
P . The following lemma (proof omitted) facilitates the
search process considerably.

Lemma 2 For any θ and a touching circle cr(q), there
exists at most one element in Lcw of the following type
(∗, q, ∗, ∗) where θ lies in the angle range of the element.
The same is true for the Lccw list.

As a consequence of Lemma 2, we need to match each
element of Lcw, say (p, q, θi, θi′) with an element of Lccw,
say (p′, q, φj , φj′), if it exists, where [θi+ π

2 , θi′+ π
2 ] over-

laps with [φj , φj′ ]. There are O(n2) matched pairs in the
worst case and these can be reported in O(n2 log n) time
in the worst case.

Theorem 3 The feasibility test to determine if there
exists an α-siphon of radius r where the circular seg-
ment of the outer boundary contains a data point can
be performed in O(n2 log n) time. The storage space re-
quirement is O(n2).

2.2 Data point lying on the outer ccw link

In this case we are looking for a candidate cw link
h(p, q, θ) and a candidate ccw link h(p′, q′, θ + π

2 ), such
that they intersect (orthogonally) and the resulting π

2 -
siphon partitions P (see Fig. 1(b)). We use the Lcw

and Lccw lists described in section 2.1. The Lccw list
can be simplified since we are interested in candidate
ccw links which are critical support lines of a pair of
circles of Cr(P ). A line is a critical support line of two
circles cr(p′) and cr(p′) if it touches both the circles and
the circles lie on different sides of the line. We there-
fore examine each critical support line (there are O(n2)
such lines) to see if a candidate ccw link can be real-
ized. If it is so, it is added to Lccw. Each stored ccw
link is a 3-tuple of the type (p′, q′, θ) where θ is the an-
gle of a critical support line, and cr(p′) and cr(q′) are
the touching and starting circles. All the O(n2) critical
support lines can be examined in O(n2 log n) time using
the sweep method described in the previous section.

Consider a candidate ccw link h(p′, q′, φ). Also con-
sider the cw links of the type (p, q, θ, θ′) where φ− π

2 ∈
[θ, θ′]. The following lemma states what happens when
these two links intersect orthogonally.

Lemma 4 If h(p′, q′, φ) orthogonally intersects a cw
link of the type (p, q, θ, θ′), either q = q′ or h(p′, q′, φ)
intersects all the cw links of the type (p, q, θ, θ′).

Let x1, x2, . . . , xs be the list of distinct endpoints of
the angle ranges of the elements of Lcw, sorted in in-
creasing order. We call the interval [xi, xi+1] an elemen-
tary interval. We build a segment tree of the angle in-
tervals whose leaves correspond to elementary intervals.
Each internal node u maintains a list of the elements of
Lcw whose corresponding angle intervals contain Int(u),
that are the union of elementary intervals of the leaves
in its subtree. The tree can be built in O(n2 log n) time
requiring O(n2 log n) space in the worst case.

The feasibility test is now briefly described. We con-
sider each ccw link (p′, q′, φ) of Lccw and do the fol-
lowing. We first find the elementary interval (i.e. the
leaf node), say [xi, xi+1], that contains the angle φ− π

2 .
We then determine all the elements of Lcw, denoted by
A(φ), stored along the path zφ from the root node to the
leaf node corresponding to [x1, xi+1]. The angle ranges
of all the elements of A(φ) contain [xi, xi+1]. Next we
determine if there exists any element of A(φ) of the type
(∗, q′, ∗, ∗). According to Lemma 2, there could be at
most one such element. If such an element a(φ) exists,
we check if there exists any cw link of the type a(φ) that
orthogonally intersects the ccw link (p′, q′, φ). This can
be easily done in O(log2 n) time by visiting each inter-
nal node along the path zφ. Suppose that there is no
such intersection. Let us consider the list of elements
of Lcw maintained by an internal node u ∈ zφ which is
denoted by Au(xi+1). Note that all the angle ranges of
the elements of Au(xi+1) contain the angle xi+1. Now
we need to find out whether the ccw link h(p′, q′, φ)
intersects a cw link of the form h(p, q, φ − π

2 ) belong-
ing to an element of the list Au(xi+1). This is done
by finding out whether h(p′, q′, φ) intersects any one of
the cw links (pj , qj , ∗, ∗)) of Au(xi+1), j = 1, 2, . . . , su

where su = |Au(xi+1)|. The correctness of this claim
follows from Lemma 4. Since all the cw links repre-
senting the elements of Au(xi+1) are parallel, we can
preprocess them and answer the query whether the
ccw link h(p′, q′, φ) intersects any of the representa-
tive parallel cw links of Au(xi+1) in O(log2 n) time.
The preprocessing time and the storage space needed
are O(su log su) and O(su) respectively. Once the ele-
ment of Au(xi+1), whose representative cw link is in-
tersected by h(p′, q′, φ), is identified, we can find the
correct cw link which orthogonally intersects the ccw
link h(p′, q′, φ). In order to guarantee the partition of
P by the resulting π

2 -siphon, we look for the intersec-
tion of a representative cw link by the line segment v′p′

where v′ is the starting point of the ccw link h(p′, q′, φ).
Such an intersection, if it exists, will guarantee that the
resulting axis of a π

2 -siphon partitions P . The query
time in this case is also O(log2 su). Since the worst case
sizes of Lcw and Lccw are O(n2) and every path of the
segment tree has O(log n) internal nodes, we have the
following theorem.
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Theorem 5 The feasibility test to determine if there
exists an α-siphon of radius r where either the outer
cw link or the outer ccw link contains a data point can
be performed in O(n2 log3 n) time. The storage space
requirement is O(n2 log n).

Combining the theorems 3 and 5, we obtain the follow-
ing result.

Theorem 6 The feasibility test for the α-siphon prob-
lem can be solved in O(n2 log3 n) time using O(n2 log n)
space.

3 Parallel implementation

The algorithm presented in section 2 is easily paralleliz-
able. We briefly describe the parallel algorithm to com-
pute the Lcw list using the parallel comparison model
of Valiant. The sweeping process of a strip around p is
performed in the following way. For each point q ∈ P ,
p 6= q, we determine the angle range ai(q) = [φq, ψq]
such that q will lie inside the strip S(lθ) of radius r
for any θ ∈ [φq, ψq]. We then build a segment tree of
these O(n) intervals in parallel, where each leaf node
corresponds to an elementary interval of angles. This
can be done in O(log n) time with O(n log n) processors
using an algorithm by Aggarwal et al. [1]. Then, for
each internal node u in the segment tree in parallel, we
compute the convex hulls of the circles of radius r with
the centers located at the points whose angle ranges are
stored at u. This computational step can also be per-
formed in O(log n) time using O(n log n) processors [1].
For any given θ, we can now obtain the elements of B(lθ)
in O(log n) lists by traversing the segment tree from the
root node to the leaf node corresponding to [xi, xi+1]
where θ ∈ [xi, xi+1]. Therefore, the leftmost intersec-
tion point of the axis m(lθ) of the strip S(lθ) with the
circles of Cr(B(lθ)) can be determined in O(log n) par-
allel steps using O(n log n) processors. Therefore, the
list Hp can be determined in O(log n) parallel steps us-
ing O(n log n) processors. Once Hp is known, the list
Lp can be obtained easily.

Since the rest of the steps of section 2.1 can be eas-
ily processed in parallel in O(log n) steps using O(n2)
processors, the parallel implementation of the algo-
rithm in section 2.1 takes O(log n) parallel steps using
O(n2 log n) processors.

In section 2.2, the major step is to build the segment
tree with the elements of Lcw list. Elements stored in
each internal node u are preprocessed for efficient inter-
section test. Using the divide-and-conquer algorithm in
[1], we construct the convex hull in O(log su) parallel
steps using O(su) processors, where su is the number of
elements stored at u. Therefore, all the internal nodes
of the segment tree can be processed in parallel using
O(log n) steps and O(n2 log n) processors.

We now need to query the segment tree for each of
the at most O(n2) elements of the Lccw list. As ob-
served in the sequential algorithm, each query takes
O(log3 n) time to answer. Therefore, the steps of sec-
tion 2.2 can be implemented using O(log3 n) parallel
steps using O(n2 log n) processors.

Therefore we claim the following result.

Theorem 7 The feasibility test algorithm can be imple-
mented in parallel using O(log3 n) steps and O(n2 log n)
steps. The widest empty α-siphon problem can therefore
be solved in O(n2 log7 n) time [5]. The storage space re-
quirement is O(n2 log n).

4 Conclusions

We showed that the feasibility problem of determining
whether there exists any empty α-siphon of radius r can
be solved in O(n2 log3 n) time using O(n2 log n) space. Pre-
viously no such o(n3)-time algorithm was known for the fea-
sibility problem. The proposed solution to the feasibility
problem can be parallelized and the parallel version of the
algorithm uses O(n2 log n) processors and O(log3 n) parallel
steps using the parallel comparison model of Valiant. There-
fore, according to Megiddo [5], the widest α-siphon problem
can be solved in O(n2 log7 n) time. The method can be
modified to solve the widest empty α-siphon, α arbitrary,
problem in o(n4) time [4]. The technique described in this
note can easily be applied with some modifications to de-
sign o(n3) time algorithms to solve the following problems:
widest empty L-shaped corridor, widest empty non-anchored
silo, largest-area empty rectangle of fixed aspect ratio (see
[2] for the references).
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