
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Computing a planar widest empty α-siphon in o(n3) time

Boaz Ben-Moshe∗ Binay K. Bhattacharya† Sandip Das‡ Daya R Gaur§ and Qiaosheng Shi¶

Abstract

Given a set of n points P in the Euclidean plane, we
consider the problem of locating a 1-corner polygonal
chain X such that minp∈P d(p,X) is maximized. The
polygonal chain has the added property that its interior
angle is α and it partitions P . This corresponds to
computing an α-siphon that does not contain any point
of P in its interior and whose radius is maximal. In this
note we present an algorithm that solves the problem
in o(n3) time. The previous best running time for this
problem was O(n3 log2 n) time [3].

1 Introduction

The facility location problem is a classical opera-
tions research problem where the task is to position
a set of objects (the facilities) in an underlying space
such that some distance measure between the facil-
ities and the given points (the demand points) is
optimized. In this paper we address an obnoxious
(undesirable) facility location problem where the dis-
tance of the nearest point to the facility is maximized.
There is a vast body of literature on location the-
ory contributed by the researchers of operations re-
search and computer science community. The web-
site http://www.ent.ohiou.edu/∼thale/thlocation.html
(last updated March, 2004) contains about 3400 refer-
ences on facility location problems. Some applications
of the obnoxious route problem include urban, industrial
and military task planning when the transportation of
some kind of obnoxious material is addressed. On the
other hand, the applications of these problems go well
beyond the field of location science. For instance the
problem of computing a connecting path avoiding colli-
sions is one of the most important tasks in robotics (e.g.
[7]).

∗Department of Computer Science, College of Judea and
Samaria, 44837 Ariel, Israel, benmo@yosh.ac.il

†School of Computing Science, Simon Fraser University, Burn-
aby, B.C., Canada, V5A 1S6; binay@cs.sfu.ca

‡Advanced Computing and Microelectronics Unit, Indian Sta-
tistical Institute, Calcutta, India-700 035; sandipdas@isical.ac.in

§Department of Computer Science, University of Lethbridge,
4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4;
gaur@cs.uleth.ca

¶School of Computing Science, Simon Fraser University Burn-
aby, B.C., Canada, V5A 1S6; qshi1@sfu.ca

Let P = {p1, p2, . . . , pn} be a set of points in the
Euclidean plane. An empty corridor through P is an
open region partitioning P (i.e. intersecting the convex
hull of P), which is bounded by two parallel lines such
that no points of P lie in the region. A corridor is
represented by R(l, r) where l is the axis line of the
corridor and r is the radius of the corridor. R(l, r) is
defined to be the Minkowski sum of l and a disk of
radius r centered at the origin. Houle [9] proposed an
O(n2) solution to compute a widest empty corridor
through P . Other variations of the corridor problem
were subsequently studied. Bereg et al. [3] considered
a corridor, called a siphon, where its axis is a 1-corner
polygonal chain consisting of two half-line links. They
proposed an O(n3 log2 n) time and O(n log n) space
solution to the widest empty α-siphon problem where
the axis of the α-siphon has the interior angle α. When
α is not specified, the widest empty siphon problem is
solvable in O(n4 logn) time requiring O(n) space [5].
The corridor problem is called the boomerang problem
[4] when the endpoints of the 1-corner polygonal
chain are anchored. An optimal O(n logn) solution to
the boomerang problem was proposed in [2]. Other
generalizations have been considered in the literature.
Chen [7] considered an L-shaped corridor which is the
concatenation of two perpendicular links where each
link is composed of an open unbounded trapezoid.
Follert et al. [8] considered the corridor whose axis is
a ray. Nandy and Bhattacharya [11] investigated the
problem of computing a largest-area empty rectangle.

In this paper we consider the widest empty α-siphon
problem for a given α. We show for the first time that
this problem can be solved in o(n3) time. We apply the
parametric search technique of Megiddo [10] in the de-
sign of the algorithm. We show that the feasibility prob-
lem of determining if there exists an empty α-siphon
of radius r can be solved in O(n2 log3 n) time using
O(n2 log2 n) space. Later we show that this sequential
algorithm for the feasibility problem is parallelizable.
The sequential algorithm for the feasibility problem is
described in section 2. Section 3 discusses the parallel
implementation of the sequential algorithm. The con-
clusions are discussed in section 4.

19th Canadian Conference on Computational Geometry, 2007

2 Feasibility problem

We consider the problem of computing of the widest
empty α-siphon through P , for a fixed α. Suppose that
w(v) represents the axis of α-siphon where w(v) is a 1-
corner polygonal chain consisting of two half-lines start-
ing at v and makes an angle α at v. The corresponding
α-siphon is the Minkowski sum of w(v) and a disk of
radius r centered at the origin (see Fig. 1).

α

Figure 1: Empty α-siphon through P

Please refer to Fig. 2 for the terminologies introduced
here. The α-siphon of radius r is denoted by R(w(v), r)
where the two boundaries are called inner and outer
boundaries. The inner boundary consists of cw and ccw
half-line links, and the outer boundary consists of a cir-
cular segment and two half-line links, cw and ccw. The
axis w(v) also consists of two half-line links, called cw

and ccw links.
The feasibility problem can be formalized as follows.

Given a set P of n points in the plane, a fixed value α,
0 ≤ α ≤ π, and a positive real value r, does there exist
an α-siphon with radius r such that no points of P lie
in its interior and it partitions P? This is equivalent to
determining the existence of a 1-polygonal chain w(v)
with interior angle α such that w(v) partitions P and
axis w(v) does not intersect the interiors of r-radii disks
with the centers at pi, i = 1, 2, . . . , n (see Fig. 3).

We first prove the following lemma which character-
izes the α-siphon we are looking for.

Lemma 1 The answer to the feasibility problem is
“yes” if and only if there exists an empty α-siphon of
width r with the following properties. (a) The outer
boundary of the α-siphon contains a data point. The
point could lie on either the cw link, ccw link or cir-
cular segment. (b) Both the cw and ccw links of the

inner ccw link

ccw
link
of w(v)

outer ccw link

cw link of w(v)

outer cw link

inner cw link p

p’

q

r

circular segment

(a)

outer cw link

cw link of w(v)

inner cw link

inner ccw link outer ccw link

ccw
link
of w(v)

(b)

q

p’

v

circular segment

p
r

v

Figure 2: Identifying the various terms of R(w(v), r).

interior boundary of the α-siphon contain a data point.
It is possible for the same data point to lie on both the
links.

Proof. Suppose we are given a valid empty α-siphon
R(w(v), r). Without any loss of generality we assume
that the ccw axis of the siphon is oriented vertically
downwards. Since R(w(v), r) partitions P , we trans-
late R(w(v), r) downwards till it hits a data point, say
a. Suppose the inner cw link of R(w(v), r) contains the
point a. We now translate R(w(v), r) in the direction of
cw link till another point hits the inner ccw link. Let b
be the point that lies on the inner ccw link of R(w(v), r).
We now rotate R(w(v), r) around a and b, keeping the
angle of the siphon same, till the boundary hits another
point c. If c lies on the inner cw link of R(w(v), r),
the rotation is continued around c and b. If c lies on
the inner ccw link of R(w(v), r), the rotation is contin-
ued around a and c. Eventually, the outer boundary of
R(w(v), r) will encounter a data point since R(w(v), r)

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

α

w(v)

v

Figure 3: Another way of looking at the α-siphon prob-
lem

partitions P . The other part of the proof is straightfor-
ward. �

In the following section we will search for an α-siphon
R(w(v), r) satisfying the criteria of Lemma 1. For the
sake of simplicity, we first assume that α = π

2
. Any

other angle can be similarly tackled. We assume that
the angle of the cw link of w(v) lies between 0 and π

2
, and

therefore, the angle of the ccw link of w(v) lies between
π
2

and π. We also assume that if the data point on the
outer boundary does not lie on the circular segment, it
lies on the ccw link. Clearly, all the remaining cases are
very similar, and therefore can be similarly solved.

The two cases mentioned in Lemma 1(a) are consid-
ered separately in the following subsections.

2.1 Data point lying on the circular segment

Let Cr(P) denote the set of disks of radius r with centers
located at the points of P . It is clear from the above
discussions that we are interested in finding a 1-corner
polygonal chain w(v) such that its cw link touches a disk
of Cr(P), its ccw link touches a disk of Cr(P) and its
corner point v lies on the boundary of a disk of Cr(P)
(see Fig. 2(a)). We also need to make sure that w(v)
partitions P and the open region R(w(v), r) is empty.
The disk on the boundary of which v lies is called the
starting disk for both the cw and ccw links. Here we
always assume the case that when a link touches a disk,
the center of the disk lies below the link. The other case
can be similarly treated.

Our solution methodology consists of two parts. In
the first part we implicitly enumerate all the candidate
cw and ccw links, and in the second part we combine
the links to construct the axis w(v) of a valid siphon,

if it exists. A candidate cw link is a half-line f whose
starting point lies on the boundary of a disk of Cr(P)
and is tangent to another disk of Cr(P), and the open
region R(f, r) is empty. We also make sure that the
angles of the candidate cw and ccw links lie in [0, π

2
]

and [π
2
, π] respectively. We now describe the method to

enumerate the candidate cw links only.
Let p be any point of P . Consider the disk cr(p) of

radius r which is centered at p.
Definition: (Upper-tangent visibility) A point x is
upper-tangent visible to disk cr(p) with respect to
Cr(P) if there exists a point x′ on cr(p) such that the
line through x and x′ is tangent to the disk cr(p) above
p and the line segment xx′ does not intersect the interior
of any disk in Cr(P).

In Fig. 4, x is upper-tangent visible to cr(p). x′ is
called the upper-tangent point of x. However, y is not
an upper-tangent visible point since p lies above the line
through y and y′. z is also not an upper-tangent visible
point since the line segment zz′ intersects the interior
of another disk.

p

x

y

z

x′

z′

y′

Figure 4: Upper tangent definition

We define V (P, p, r) as the locus of points in the plane
which are upper-tangent visible to cr(p) with respect to
Cr(P). V (P, p, r) is called the upper-tangent visibil-
ity diagram of cr(p) (Fig. 5). An useful property of
V (P, p, r) is that every point pi has at most one arc in
V (P, p, r) since the disks have the same radius.

Lemma 2 V (P, p, r) can be constructed in O(n log n)
time.

Proof. We place n disks of radius r at all points pi of
P . Every disk realizes an arc on the boundary of cr(p)
when projected along the upper-tangent lines as shown

19th Canadian Conference on Computational Geometry, 2007

p

Figure 5: Upper-tangent visibility diagram of cr(p)

in Fig. 6. The disks of Cr(P) are considered in de-
creasing order of the distances of their centers to the
center of cr(p). Let V (Pi, p, r) denote the upper tan-
gent visibility diagram of Pi = {p1, p2, . . . , pi}. When
cr(pi+1) is considered, we update V (Pi, p, r) to obtain
V (Pi+1, p, r). This is done by inserting the projection
arc of cr(pi+1) to the set of arcs inserted already. The
process is very similar to the one discussed in [3]. The
updating step takes O(1) amortized time. �

Once V (P, p, r) is known, all the candidate cw and
ccw links, touching cr(p) and having angles in the ranges
[0, π

2
] and [π

2
, π] respectively, can be easily determined.

We denote a candidate cw link by cw(p, q, θ) where the
cw link touches the disk cr(p), starts from the disk cr(q)
and has angle θ. We use the notation cw(p, q, θ1, θ2)
to denote all the cw links of the type cw(p, q, θ) where
θ ∈ [θ1, θ2]. In order to be consistent, we will use
the notation cw(p, q, θ, θ) to denote cw(p, q, θ). In Fig.
7, cw(p, a, θ4, θ4) is a candidate cw link. All the can-
didate cw links touching cr(p) with angles in [θ1, θ4]
are represented by cw(p, a, θ1, θ2), cw(p, b, θ2, θ3) and
cw(p, c, θ3, θ4) (see Fig. 7). Similar representations are
used for the ccw links also. Note that a candidate cw or
ccw link may not have a starting disk. In Fig. 7, the ccw
link ccw(p,−, φ, φ) does not have a starting disk. These
links can be ignored when we are looking for a siphon
where there exists a data point on the circular segment
boundary. However, for the case when the outer cw/ccw
link has a data point, these links cannot be ignored. We
will assume from now on that every candidate cw/ccw
link has a starting disk. The modifications are minor
for the general case. Let Lcw(p) and Lccw(p) denote
the list of all the candidate cw and ccw links touch-

p

pj

xi
x′i pi

xj

x′j

Figure 6: [xi, x
′
i] is the upper-tangent projection of

cr(pi). The upper-tangent projection of cr(pj) is
[xj , x

′
j].

ing cr(p) respectively. Let Lcw(P) = ∪i=n
i=1Lcw(pi) and

Lccw(P) = ∪i=n
i=1Lccw(pi). The following lemma easily

follows.

Lemma 3 Lcw(P) and Lccw(P) sets can be computed
in O(n2 logn) time.

In the second part, we need to find an angle ω, if it
exists, such that there exist touching disks cr(p) and
cr(p

′), and a point v on a starting disk cr(q) where
the candidate cw link, cw(p, q, ω, ω), and ccw link,
ccw(p′, q, ω + π

2
, ω + π

2
) start from the same point v

(see Fig. 2(a)). It is easy to see that the resulting π
2
-

siphon is empty and partitions P . The following lemma
facilitates the search process considerably.

Lemma 4 For any θ ∈ [0, π
2
] and a starting disk cr(q),

there exists at most one candidate cw link of angle θ in
Lcw(P) with the same starting disk. The same is true
for the Lccw(P) list.

Proof. Suppose, if possible, there exist two candidate
cw links cw(p1, q, θ, θ) and cw(p2, q, θ, θ). Clearly, the
perpendicular the distance between the two links is
less than 2r. Since cr(p1) and cr(p2) touch the links
from below, either p2 lies in the interior of the region
R(cw(p1, q, θ, θ), r) or p1 lies in the interior of the region
R(cw(p2, q, θ, θ), r). Thus we have a contradiction. �

As a consequence of Lemma 4, we need to match
each element of Lcw(P), say cw(p, q, θi, θi′) with an el-
ement of Lccw, say ccw(p′, q, φj , φj′), if it exists, where

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

c

b

a

θ1

θ2

θ3

θ4

φ

cwlink
ccw linkp

Figure 7: All the candidate cw links, touching cr(p),
with the angles in [θ1, θ4]] are represented by tuples
cw(p, a, θ1, θ2), cw(p, b, θ2, θ3) and cw(p, c, θ3, θ4).

[θi + π
2
, θi′ + π

2
] overlaps with [φj , φj′]. These matched

pairs are easily identifiable once the endpoints of the an-
gle ranges of the elements of Lcw(P) and Lccw(P) are
sorted. There are O(n2) matched pairs in the worst
case and these can be reported in O(n2 logn) time.
Each matched pair, cw(p, q, θi, θ

′
i) and ccw(p′, q, φj , φ

′
j),

is then examined to determine if there exists a point v
on cr(q) such that cw(p, q, ψ) and ccw(p′, q, ψ + π

2
) are

valid links for some ψ. Since each matched pair can be
examined in O(1) time, the total cost for the second
step is O(n2 logn).

Theorem 5 The feasibility test to determine if there
exists an α-siphon of radius r where the circular seg-
ment of the outer boundary contains a data point can
be performed in O(n2 logn) time. The storage space re-
quirement is O(n2).

2.2 Data point lying on the outer ccw link

In this case we are looking for a candidate cw link and a
candidate ccw link such that they orthogonally intersect
and the resulting π

2
-siphon partitions P (see Fig. 2(b)).

We use the Lcw(P) and Lccw(P) lists described in sec-
tion 2.1. The Lccw(P) list can be simplified since we are
interested in candidate ccw links which are critical sup-
port lines of a pair of disks of Cr(P). A line is a critical
support line of two disks cr(p

′) and cr(p
′) if it touches

both the disks and the disks lie on different sides of the
line. We therefore examine each critical support line
(there are O(n2) such lines) to see if a candidate ccw
link can be realized. If it is so, it is added to Lccw(P).

We associate the disk, say cr(p
′), that touches the ccw

link from below as the touching disk. Each stored ele-
ment is of the form ccw(p′, q′, θ, θ) where θ is the angle
of the critical support line. All the O(n2) critical sup-
port lines can be examined easily in O(n2 logn) time
once the visibility diagrams V (P, pi, r), i = 1, 2, . . . , n,
are known.

Consider a candidate ccw link ccw(p′, q′, φ, φ) of
Lccw(P). Also consider the candidate cw links rep-
resented by cw(p, q, θ, θ′) where φ − π

2
∈ [θ, θ′]. The

cw link cw(p, q, φ − π
2
, φ − π

2
) orthogonally intersects

ccw(p′q′, φ, φ) if the two half-lines intersect. This leads
to the following lemma which is stated without a proof
(see Fig. 8).

Lemma 6 If a ccw link ccw(p′, q′, φ, φ) orthogonally
intersects a cw link of cw(p, q, θ, θ′), either q =
q′ or ccw(p′, q′, φ, φ) intersects all the cw links of
cw(p, q, θ, θ′).

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

p

v

v

cw(p, q, θ, θ′)

q

ccw(p′, q, φ, φ)

ccw(p′, q′, φ, φ)

Figure 8: ccw(p′, q′, φ, φ) intersects a cw link of
cw(p, q, θ, θ′) in two different ways depending on the lo-
cation of the starting point v of the ccw link. v cannot
lie in the interior of the shaded region determined by
the candidate cw links cw(p, q, θ, θ′).

Let x1, x2, . . . , xs be the sorted list of distinct end-
points of the angle ranges of the candidate cw links
of Lcw(P). We call the interval [xi, xi+1] an elemen-
tary interval. We build a segment tree of the angle
ranges whose leaves correspond to elementary inter-
vals. Each internal node u maintains a list of the ele-
ments of Lcw(P) whose corresponding angle ranges con-
tain Int(u) but does not contain Int(parent(u)) where
Int(u) is the union of elementary intervals of the leaves
in the subtree of u. The segment tree can be built in
O(n2 log n) time requiringO(n2 logn) space in the worst

19th Canadian Conference on Computational Geometry, 2007

case. A visible description of a segment tree is given in
Fig. 9.

ia

a
b

b

b, e, g c, d

c
d

d

e
f

f

g

h

g, i

ca, e, h

i

xi xi+1

zφ

u

h

Figure 9: Segment tree structure

The feasibility test is now briefly described. We con-
sider each ccw link ccw(p′, q′, φ, φ) of Lccw(P) and do
the following. We first find the elementary interval (i.e.
the leaf node), say [xi, xi+1], that contains the angle
φ − π

2
. We then determine all the elements of Lcw(P),

denoted by A(φ), stored along the path zφ of the seg-
ment tree from the root node to the leaf node repre-
senting [x1, xi+1]. The angle ranges of all the elements
of A(φ) contain [xi, xi+1], and therefore contain φ− π

2
.

Next we determine if there exists any element of A(φ) of
the type cw(p, q′, θ, θ′) for any p. According to Lemma
4, there could be at most one such element. If such an el-
ement a(φ) exists, we check if there exists any cw link of
the type a(φ) that orthogonally intersects the ccw link
ccw(p′, q′, φ, φ). This can be easily done in O(log2 n)
time by processing each internal node along the path
zφ. We are assuming that the elements stored at each
internal node are kept in sorted order by their starting
disks indices. Let us now consider the case when there
is no such intersection as described above. Consider
the list of elements of Lcw(P) maintained by an inter-
nal node u ∈ zφ which is denoted by Au(xi+1). Note
that all the angle ranges of the elements of Au(xi+1)
contain the angle xi+1. Now, due to lemma 6, we only
need to find out whether the ccw link ccw(p′, q′, φ, φ)
orthogonally intersects a cw link of Au(xi+1). This is
done by finding out whether ccw(p′, q′, φ, φ) intersects
any one of the cw links cw(pj , qj , xu, xu) of Au(xi+1),
j = 1, 2, . . . , su where su = |Au(xi+1)|. Here xu is
the largest angle of the angle range Int(u). Since
all the valid cw links cw(pj , qj , xu, xu) of Au(xi+1),
for arbitrary pj and qj , are parallel, we can prepro-
cess them and answer the query whether the ccw link

ccw(p′, q′, φ, φ), a half-line, intersects any of the parallel
cw links of Au(xi+1) in O(log2 n) time. This is done
by constructing the convex hull of the parallel half-lines
cw(pj , qj , xu, xu), j = 1, 2, . . . , su, su = |Au(xi+1)|, us-
ing the divide-and-conquer algorithm where the divid-
ing direction is given by xu [12]. The preprocessing time
and the storage space needed are O(su log su) and O(su)
respectively. Once the element of Au(xi+1), whose rep-
resentative cw link is intersected by ccw(p′, q′, φ, φ), is
identified, we can find the correct cw link which or-
thogonally intersects the ccw link ccw(p′, q′, φ, φ). In
order to guarantee the partition of P by the resulting
π
2
-siphon, we look for the intersection of a candidate cw

link of Au(xi+1) by the line segment v′p′ where v′ is the
starting point of the ccw link ccw(p′, q′, φ, φ). Such an
intersection, if it exists, will guarantee that the result-
ing axis of a π

2
-siphon partitions P . The query time in

this case is also O(log2 su). It is possible that the cw
link of the resulting axis of the π

2
-siphon may not touch

any disk. However, we can translate the siphon along
the ccw link to satisfy all the properties mentioned in
Lemma 1. Since the worst case sizes of Lcw(P) and
Lccw(P) are O(n2) and every path of the segment tree
has O(log n) internal nodes, we have the following the-
orem.

Theorem 7 The feasibility test to determine if there
exists an α-siphon of radius r where either the outer
cw link or the outer ccw link contains a data point can
be performed in O(n2 log3 n) time. The storage space
requirement is O(n2 log n).

Combining the theorems 5 and 7, we obtain the follow-
ing result.

Theorem 8 The feasibility test for the α-siphon prob-
lem can be solved in O(n2 log3 n) time using O(n2 logn)
space.

According to Bereg et al. [3], the optimal radius of
widest α-siphon is determined by at most three critical
points. Therefore, all the critical radii can be enumer-
ated in O(n3) time. Given the O(n2 log3 n) algorithm
for the feasibility test, we can determine the widest
empty α-siphon in O(n3) time. However, in the next
section, we briefly describe a parallel version of the
O(n2 log3 n) algorithm. This will result in an algorithm
that solves the widest empty α-siphon problem in o(n3)
time.

3 Parallel implementation

We apply the parametric search technique [10] to com-
pute the optimal siphon of radius r∗. We need a parallel
algorithm to solve the feasibility problem. For that we
need to provide parallel implementations of the follow-
ing steps:

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

(a) Computing Lcw(P) and Lccw(P).

(b) Enumerating the matched pairs as described in sec-
tion 2.1.

(c) Constructing the segment tree as described in sec-
tion 2.2.

Each of the upper-tangent visibility diagrams
V (P, pi, r), i = 1, 2, . . . , n, can be constructed using the
divide and conquer approach. The corresponding par-
allel implementation using O(log2 n) parallel steps and
O(n) processors is straightforward. A similar approach
was described in Bereg et al [3]. Thus the lists Lcw(P)
and Lccw(P) can be determined in O(log2 n) parallel
steps using O(n2) processors.

For item (b) mentioned above, we first compute two
segment trees in parallel using the angle ranges of the
elements for each of Lcw(P) and Lccw(P). Each leaf
node corresponds to an elementary interval of angles.
The segment tree can be constructed in O(log n) time
with O(n2 logn) processors using an algorithm by Ag-
garwal et al. [1]. The elements stored in each internal
node u are preprocessed in order to perform he follow-
ing operation: Given an arbitrary q, determine, if it
exists, the element whose starting disk is q. The opera-
tion is easy to implement. We keep the list, stored at u,
sorted by the starting disks indices. This can be done
in O(log n) parallel steps using O(n2 logn) processors.
For every starting angle θ of the angle range of the can-
didate ccw links ccw(p, q, θ, θ′), we can determine the
matched cw links cw(p′, q, φ, φ′) where θ − π

2
∈ [φ, φ′],

if exists, in O(log2 n) time. This is done by first finding
the elementary interval containing the angle θ − π

2
and

then traverse the segment tree of the list Lcw(P) from
the root to the leaf node representing the elementary
interval. Similarly, every starting angle θ of the angle
range of the candidate cw links cw(p, q, θ, θ′), we can
determine the matched ccw links ccw(p′, q, φ, φ′) where
θ + π

2
∈ [φ, φ′], if exists, in O(log2 n) time.

For the operation (c) mentioned above we again use
the segment tree of Lcw(p). The elements stored at each
internal node u are preprocessed for performing the fol-
lowing operation: Given an arbitrary ray, determine if
there exists an element of Lcw(P) that is intersected by
the ray. The tree data structure of [12] to construct the
convex hull can be computed in O(log su) parallel steps
using O(su) processors, where su is the number of ele-
ments stored at u. We use the largest angle of the angle
range represented by Int(u) as the dividing direction.
Therefore, all the internal nodes of the segment tree
can be processed in parallel using O(log n) steps and
O(n2 logn) processors. We now query the segment tree
for each of the O(n2) elements of the Lccw(P) list. As
observed in the sequential algorithm, each query takes
O(log3 n) time to answer. Therefore, the steps of sec-

tion 2.2 can be implemented using O(log3 n) parallel
time and O(n2 logn) processors.

We can now claim the following result.

Theorem 9 The feasibility test algorithm can be imple-
mented in parallel using O(log3 n) steps and O(n2 logn)
processors. Therefore the widest empty α-siphon prob-
lem can be solved in O(n2 log7 n) time. The storage
space requirement is O(n2 logn).

4 Conclusions

In this note we showed that the feasibility problem of
determining whether there exists any empty α-siphon
of radius r can be solved in O(n2 log3 n) time using
O(n2 log n) space. Previously no such o(n3)-time al-
gorithm was known for the feasibility problem. We
also showed that the proposed solution to the feasibil-
ity problem can be parallelized. The parallel version of
the algorithm uses O(n2 logn) processors and O(log3 n)
parallel steps using the parallel comparison model of
Valiant. Therefore, according to Megiddo [10], the
widest α-siphon problem can be solved in O(n2 log7 n)
time. The method can be modified to solve the widest
empty α-siphon, α arbitrary, problem in o(n4) time [4].
The technique described in this note can easily be ap-
plied with some modifications to design o(n3) time al-
gorithms to solve the following problems: widest empty
L-shaped corridor [7], widest empty non-anchored silo
[8], largest-area empty rectangle of fixed aspect ratio
[11].

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’únlaing, and
C. Yap, “ Parallel computational geometry, Algorith-
mica, 3(3):293-328,1988.

[2] B. Ben-Moshe, B. K. Bhattacharya, and Q. Shi,
“Computing the widest empty boomerang”, In Proceed-
ings Canadian Conference on Computational Geometry
(CCCG), 80-83, 2005.

[3] S. Bereg, J. M. Dı́az-Báñez, C. Seara, and I. Ventura,
“On finding widest empty curved corridors”, Proc.
20th European Workshop on Computational Geometry
- EWCG’04, 33-36, 2004. (Accepted for publication in
Computational Geometry: Theory and Applications,
2007.)

[4] J. M. Dı́az-Báñez and F. Hurtado, “Computing obnox-
ious 1-corner polygonal chains”, Computers & Opera-
tions Research, 33(4):1117-1128, 2006.

[5] J. M. Dı́az-Báñez, M.A. López, and J.A. Sellarès, “On
finding a widest empty 1-corner corridor”, Information
Processing Letters, 98:199-205, 2006.

19th Canadian Conference on Computational Geometry, 2007

[6] J. M. Dı́az-Báñez, F. Hurtado, H. Meijer, D. Rappa-
port, and J. A. Sellarès, “The largest empty annulus
problem”, International Journal of Computational Ge-
ometry and Applications,13(4):317–325, 2003.

[7] S-W Cheng, “Widest empty L-shaped corridor”, Infor-
mation Processing Letters, 58:277-283, 1996.

[8] F. Follert, E. Schömer, J. Sellen, M. Smid and Chris-
tian Thiel, “Computing a largest empty anchored cylin-
der, and related problems”, International Journal of
Computational Geometry and Applications, 7(6):563–
580, 1997.

[9] M.E. Houle, “Algorithms for weak and wide separation
of sets”, Discrete and Applied Mathematics, 45(2):139-
159, 1993.

[10] N. Megiddo, “Applying parallel computation algo-
rithms in the design of serial algorithms”, Journal of
ACM, 30(4):852-865, 1983.

[11] S. C. Nandy and B. B. Bhattacharya, “On finding an
empty staircase polygon of largest area (width) in a
planar point set”, Computational Geometry: Theory
and Applications, 26:143-171, 2003.

[12] M.H. Overmars and J. van Leeuwen, “Maintenance of
configurations in the plane”, Journal of Computer Sys-
tem Science, 23:166-204, 1981.

