
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

On the Number of Empty Pseudo-Triangles in Point Sets

Marc van Kreveld∗ Bettina Speckmann†

Abstract

We analyze the minimum and maximum number of
empty pseudo-triangles defined by any planar point set.
We consider the cases where the three convex vertices
are fixed and where they are not fixed. Furthermore,
the pseudo-triangles must either be star-shaped or can
be arbitrary.

1 Introduction

Counting empty convex k-gons in planar point sets is
a classic problem in combinatorial geometry that goes
back to Erdős. In particular, he asked for the smallest
number N(k) such that any set P of at least N(k) points
contains the vertex set of a convex k-gon whose interior
does not contain any point of P . A related question
asks for the minimum number of empty convex k-gons
any set of points must contain.

These questions naturally generalize to other poly-
gons that do not need to be convex. In particular,
we are interested in pseudo-triangles, which are simple
polygons that have exactly three convex vertices with
internal angles less than π, see Figure 1. A pseudo-
triangle is the “most reflex” polygon possible and can be
considered the natural counterpart of convex polygons.
In this note we study the number of empty pseudo-
triangles that are contained in planar point sets. Since
not every pseudo-triangle is star-shaped (see, for ex-
ample, the rightmost pseudo-triangle in Figure 1) we
consider this question both for star-shaped and general
pseudo-triangles. Somewhat surprisingly, the answers
differ by orders of magnitude.

Figure 1: Empty pseudo-triangles in a point set.

Concerning the number of empty convex polygons, it
was shown in [3, 4, 5] that for any set P of n points in
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general position, there are Ω(n2) subsets of three, four,
five, and six points that form empty convex triangles,
quadrilaterals, pentagons, and hexagons. These bounds
are tight. Furthermore, there are arbitrarily large sets of
points that do not contain any empty convex heptagon.
Trivially, for any constant k, the maximum number of
empty convex k-gons is Θ(nk), which is obtained by
taking n points in convex position.

In this note we consider the minimum and maximum
number of pseudo-triangles that are contained in a set P
of n points. If we do not require the pseudo-triangles to
be empty of points in P , then we can have exponentially
many of them. For example, place one point p0 at the
origin and all other n−1 points on the lower left quarter
of the circle (x − 1)2 + (y − 1)2 = 1. Then p0 together
with any subset of P \ {p0} of size ≥ 2 forms a pseudo-
triangle, so there are at least 2n−1−n of them. The min-
imum number of pseudo-triangles, empty or not, is cubic
(e.g., for points in convex position, see Theorem 7).

Hence we concentrate on empty pseudo-triangles.
First we assume that a triangle �uvw is given together
with a set P of n points inside it. We analyze the num-
ber of empty pseudo-triangles that have u, v, and w as
the convex vertices, and all other vertices must be points
of P . In this setting we have four combinatorial ques-
tions, namely the minimum and maximum number of
empty general or star-shaped pseudo-triangles. We give
tight upper and lower bounds for each question; our re-
sults are summarized in the table below. Observe that
the (asymptotic) number of empty pseudo-triangles in
the general case can be quadratic or cubic, depending
on the point set, but in the star-shaped case we always
get the same, quadratic bound.

Section 2 general star-shaped
minimum Θ(n2) Θ(n2)
maximum Θ(n3) Θ(n2)

If the convex vertices of the empty pseudo-triangles
are not specified, then we get the same four questions
that should be settled with an upper and a lower bound.
Most of the ideas used before can be extended. We
obtain the results summarized in the table below.

Section 3 general star-shaped
minimum Θ(n3) Θ(n3)
maximum Θ(n6) Θ(n5)
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2 Pseudo-triangles with given corners

Let u, v, and w be three points in the plane, and let P be
a set of n points inside the triangle �uvw. We assume
that no three points of P ∪ {u, v, w} lie on a line. Any
pseudo-triangle with u, v, and w as the convex vertices
has a concave chain between u and v, denoted C(u, v),
and also concave chains C(v, w) and C(w, u). For an
empty pseudo-triangle, any point of P lies on one of
the three chains or in one of the three convex polygons
C(u, v)∪ vu, C(v, w)∪wv, and C(w, u)∪uw. If a point
lies in C(u, v)∪vu, then we say that the point is excluded
by the chain C(u, v) (and analogous terminology is used
for exclusion by C(v, w) and C(w, u)). We denote the
line that passes through two points p and q by �(p, q).

Observation 1 If P is partitioned into Pu,v ∪ Pv,w ∪
Pw,u, such that all points in Px,y lie on C(x, y) or are
excluded by C(x, y) (with x, y ∈ {u, v, w} and x �= y),
then at most one empty pseudo-triangle exists that has
this partition. It is formed by the edges of the convex
hulls of Pu,v ∪ {u, v}, Pv,w ∪ {v, w}, and Pw,u ∪ {w, u},
where uv, vw, and wu are removed.

2.1 General pseudo-triangles

Theorem 1 Given three points u, v, w and a set P of
n points inside �uvw, the maximum number of empty
pseudo-triangles with u, v, w as the convex vertices is
Θ(n3).

Proof. The lower bound is an easy construction, see
Figure 2. To prove the upper bound, let pi, pj , and
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w

Figure 2: Sometimes Ω(n3) pseudo-triangles.

pk be any three points of P . We analyze the number
of pseudo-triangles such that edge upi is on the chain
C(u, v), edge vpj is on the chain C(v, w), and edge wpk

is on the chain C(w, u). Clearly, if any of the three
edges intersect, then no pseudo-triangle exists of this
type. Otherwise, we extend the edges upi, vpj , and vpj

in a special way.
Assume first that �(u, pi) is below �(v, pj) ∩ �(w, pk).

Then we let point qi = �(u, pi) ∩ �(v, pj), point qj =
�(v, pj) ∩ �(w, pk), and point qk = �(w, pk) ∩ �(u, pi),
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Figure 3: Always O(n3) pseudo-triangles, first case.

see Figure 3. If �qiqjqk contains points of P , then no
pseudo-triangle exists of this type: Either the pseudo-
triangle would not be empty, or the concavity of one of
the chains is compromised. Furthermore, all points in
�uvqi must be excluded via the chain C(u, v), all points
in �vwqj must be excluded via the chain C(v, w), and
all points in �wuqk must be excluded via the chain
C(w, u). This fully defines the partition as in Observa-
tion 1, so we count at most one pseudo-triangle.

Next assume that �(u, pi) is above �(v, pj) ∩ �(w, pk);
note that due to the specification of pi, pj , and pk, this
case is not symmetric to the previous one. The argu-
ment, however, is still analogous. This time we let point
qi = �(u, pi) ∩ �(w, pk), point qj = �(v, pj) ∩ �(u, pi),
and point qk = �(w, pk) ∩ �(v, pj), see Figure 4. If
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Figure 4: Always O(n3) pseudo-triangles, second case.

�qiqjqk contains points of P , then no pseudo-triangle
exists of this type: Either the pseudo-triangle would not
be empty, or the concavity of one of the chains is com-
promised, or the chains would intersect. The rest of the
argument is exactly as in the previous case, so we again
count at most one pseudo-triangle.

All remaining cases (�(u, pi) contains �(v, pj) ∩
�(w, pk), or some chain(s) do not contain points of P )
are straightforward to analyze. Since there are 6 · (

n
3

)

choices for pi, pj , and pk, the upper bound follows. �

Theorem 2 Given three points u, v, w and a set P of
n points inside �uvw, the minimum number of empty
pseudo-triangles with u, v, w as the convex vertices is
Θ(n2) (assuming non-degeneracy).



CCCG 2007, Ottawa, Ontario, August 20–22, 2007

u v

w

Figure 5: Sometimes O(n2) pseudo-triangles.

Proof. This time we begin with the upper bound,
which is an easy construction shown in Figure 5. All
points of P are placed on a circular arc centered at w
(any minor perturbation can be used to remove this de-
generacy). There are only O(n) choices for the chain
C(v, w), only O(n) choices of the chain C(w, u), and
given these choices, the chain C(u, v) is completely spec-
ified since we only count empty pseudo-triangles. The
quadratic upper bound follows.

Next we prove the lower bound. We need to show that
any set P gives Ω(n2) pseudo-triangles. Let (pi, pj) be
any pair of points from P . If �(pi, pj) does not intersect
uv then we assign the pair to uv. Similarly, if �(pi, pj)
does not intersect vw then we assign the pair to vw,
and if �(pi, pj) does not intersect wu then we assign the
pair to wu. Due to non-degeneracy, we assign each pair
from P to exactly one side of �uvw.

By symmetry and the pigeon-hole principle we may
assume that uv is assigned Ω(n2) pairs of points. Make
each pair ordered so that upi, pipj , pjv is a concave chain
that does not self-intersect. Let q = �(u, pi) ∩ �(v, pj),
see Figure 6, and let q′ be infinitesimally above q. Then
an empty pseudo-triangle exists that excludes the points
of P ∩ �uvq′ via the chain C(u, v), that excludes the
points of P ∩ �vwq′ via the chain C(v, w), and that
excludes the points of P ∩�wuq′ via the chain C(w, u).
Furthermore, upi and vpj are the extreme edges of
C(u, v). Hence, for any other pair (pk, pl) assigned to
uv we get a different pseudo-triangle. Since Ω(n2) edges
were assigned to uv, there are Ω(n2) different pseudo-
triangles. �
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Figure 6: Always Ω(n2) pseudo-triangles.

The non-degeneracy assumption in the theorem above
is essential. If all points of P lie on a line that also
passes through w, for example, then there are only O(n)
different empty pseudo-triangles.

2.2 Star-shaped pseudo-triangles

It turns out that the number of empty star-shaped
pseudo-triangles does not vary with P , asymptotically,
and is always quadratic. The lower-bound proof of The-
orem 2 generates only star-shaped pseudo-triangles, be-
cause q′ is always in the kernel. So the minimum num-
ber of empty shar-shaped pseudo-triangles is Ω(n2). It
remains to prove that the maximum number of empty
star-shaped pseudo-triangles is also O(n2).

Lemma 3 Given three points u, v, w and a set P of n
points inside �uvw, the maximum number of empty
star-shaped pseudo-triangles with u, v, w as the convex
vertices is O(n2).

Proof. Consider the set of 3n lines defined by one point
of P and one point of {u, v, w}, see Figure 7. These
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Figure 7: Always O(n2) star-shaped pseudo-triangles.

lines form an arrangement of quadratic size. Let q be
any point inside a cell of the arrangement. If we assume
that q is in the kernel of the empty pseudo-triangle, then
the pseudo-triangle is completely determined: all points
of P ∩�uvq are excluded via the chain C(u, v), and the
analogous statement holds for P ∩�vwq and P ∩�wuq.
By the choice of lines, no matter where q lies in its cell,
the subsets P ∩�uvq, P ∩�vwq, and P ∩�wuq are the
same. Since there are O(n2) combinatorially distinct
positions for q, the lemma follows. �

Corollary 4 Given three points u, v, w and a set P of n
points inside �uvw, the minimum and maximum num-
ber of empty star-shaped pseudo-triangles with u, v, w as
the convex vertices is Θ(n2).
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3 Pseudo-triangles in point sets

We discuss the case where the convex vertices are not
given in advance. The results in the previous section
give rise to some easy results for this case.

Theorem 5 Given a set P of n points in the plane, the
maximum number of empty pseudo-triangles is Θ(n6).

Proof. The upper bound follows by taking all triples
of P as u, v, and w and using the result of Theorem 1.

The lower bound follows by taking the construction
of Theorem 1, using only n/2 points inside �uvw, and
replacing u, v, and w by n/6 points each. w is replaced
by n/6 points on a horizontal line, very closely spaced
and at w. Similarly, u and v are replaced by n/6 points
each, and on lines that make angles of 60 degrees (for
v) and −60 degrees (for u) with the x-axis. �

The same proof adaptations give the result on the max-
imum number of star-shaped pseudo-triangles. We sim-
ply state the result:

Theorem 6 Given a set P of n points in the plane, the
maximum number of empty star-shaped pseudo-triangles
is Θ(n5).

We will give one more result, namely that any point
set gives Ω(n3) different empty star-shaped pseudo-
triangles. It completes the study of the number of empty
pseudo-triangles, since a point set in convex position
gives only O(n3) different pseudo-triangles.

Theorem 7 Given a set P of n points in the plane,
the minimum number of empty pseudo-triangles (star-
shaped or arbitrary) is Θ(n3).

Proof. We only need to prove two results: there is a
set of n points that gives O(n3) empty not necessarily
star-shaped pseudo-triangles, and any point set gives
Ω(n3) empty star-shaped pseudo-triangles. For the for-
mer claim, simply take a set of n points in convex posi-
tion. For the latter claim, take any three points pi, pj ,
and pk of P . We will show that an empty star-shaped
pseudo-triangle exists with pi, pj , and pk as the convex
vertices. Take any point q in the interior of �pipjpk,
and so that piq, pjq, and pkq do not contain any point
of P . Consider the pseudo-triangle that excludes any
points of P ∩ �pipjq via chain C(pi, pj), any points
of P ∩ �pjpkq via chain C(pj , pk), and any points of
P ∩ �pkpiq via chain C(pk, pi). Clearly this gives a
pseudo-triangle with pi, pj , and pk as the convex ver-
tices and q in the kernel. All

(
n
3

)
choices of pi, pj , and

pk give different pseudo-triangles. �

4 Conclusions

We have given tight bounds on the minimum and max-
imum number of empty pseudo-triangles that either
must be star-shaped or may be arbitrary. The construc-
tions and proofs are simple and elegant. An open ques-
tion is whether pseudo-triangles that are 9-gons are nec-
essary to have Ω(n3) and Ω(n6) empty pseudo-triangles
in Theorems 1 and 5, or that smaller complexity pseudo-
triangles can also be used.
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