
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Experimental Evaluation of Structural Filtering

as a Tool for Exact and Efficient Geometric Computing ∗

Stefan Näher Martin Taphorn †

Abstract

We report on experimental studies and further inves-
tigations of structural filtering introduced in [3] as a
paradigm for efficient exact geometric computing. In
particular, we show that structural filtering can almost
completely avoid the overhead of floating-point filters
for many fundamental geometric problems. Further-
more we develop new repair strategies that avoid the
very bad performance of the simple repair methods pre-
sented in the original paper in presence of difficult input
data.

1 Introduction

Algorithms in computational geometry use geometric
predicates in their conditionals. A common strategy for
exact geometric computing is to evaluate all predicates
exactly and to use floating-point filters ([2]) to make this
evaluation efficient. This approach is used in the exact
geometry kernels of CGAL and LEDA ([4]).

Floating-point filtering (also called predicate filter-
ing) works as follows. The evaluation of a geometric
predicate amounts to the computation of the sign of an
arithmetic expression. The filter evaluates the expres-
sion using floating-point arithmetic and also computes
an error bound to determine whether the floating-point
result is reliable. If the error bound does not suffice to
prove correctness, the expression is re-evaluated using
exact arithmetic.

This strategy incurs an overhead when compared to
a pure floating-point implementation. For easy inputs

where the floating-point computation always yields the
correct sign, the overhead consists of the computation
of the error bound which is about a factor of two for
good filter implementations. For difficult inputs where
the floating-point filter fails very often, the overhead
may be much larger, but this is not really relevant, as
the floating-point computation will produce an incorrect
result.

Structural filtering as introduced in [3] views the ex-
ecution of an algorithm as a sequence of more general
steps and applies filtering at the level of these steps.

∗This work was supported by DFG-Grant Na 303/2-1
†Department of Computer Science, University of Trier, Ger-

many. {naeher, taphorn}@uni-trier.de

A step may contain many predicates and errors are al-
lowed in the evaluations of these predicates, but finally,
the outcome of each step has to be correct.

In order to achieve this correctness every step is ex-
ecuted using pure floating-point arithmetic in the first
place. Then the result is checked for correctness and if
this check fails, a repair procedure is called. The most
simple repair strategy is to recompute the entire step
using predicate filtering. We will see that often much
more efficient repair strategies exist (see section 3).

In this context floating-point filtering is just a special-
ization of structural filtering where each step consists of
one geometric predicate, checking for correctness is done
by comparing with the error bound, and the repair step
consists of re-computing the corresponding expression
with exact arithmetic.

Structural filtering only works if every step is guaran-
teed to terminate even in presence of arbitrary errors in
the floating-point evaluation of its predicates. In many
cases this condition is obviously fulfilled because the un-
derlying structure is acyclic, e.g. when searching in a
binary search tree or skiplist. In other cases termina-
tion can be easily guaranteed by slightly modifying the
algorithm, e.g. by marking all visited nodes when walk-
ing in a triangulation. The goal of structural filtering
is to implement exact geometric computing at the cost
of floating-point arithmetic in cases where no repairing
step is necessary.

In this work we investigate experimentally the poten-
tial of structural filtering for different fundamental geo-
metric problems and show that this goal can be achieved
in many cases. In particular for new implementations of
algorithms for sorting, convex hull, plane sweep, point
location, and range searching.

The remainder of this paper is structured as follows.
In Section 2 we give the details of the structural fil-
tering methods we used for a collection of fundamen-
tal problems, such as sorting, search trees and skiplists,
plane sweep, range trees, and point-location. Section 3
presents the point generators we used for easy and diffi-
cult problem instances and gives the results of the most
important experiments. Finally, Section 4 gives some
conclusions and reports on current and future work.

19th Canadian Conference on Computational Geometry, 2007

2 Structural Filtering and Repairing

2.1 Sorting

Sorting points according to different linear orderings
(e.g. the lexicographic ordering of the cartesian or po-
lar coordinates) is a basic step in many algorithms for
geometric problems, as in the computation of convex
hulls, triangulations, and many plane sweep algorithms.
Quicksort has to be proven the most efficient sorting al-
gorithms in these applications.

In [3] a structural filtering version of quicksort is pre-
sented that uses an exact insertion sort routine in the
repair step. For the partitioning a cheap floating-point
compare function is used. After the recursive calls of
quicksort we end up with two increasingly sorted subse-
quences separated by the pivot element. However, due
to possible errors made in the partitioning the entire
sequence may not be sorted correctly. This can easily
be tested by comparing the pivot with its two neighbors
using the exact compare function. If the test fails the
repairing is done by a call of insertion sort again using
the exact compare function. Please see [3] for a more
detailed description and an analysis of this algorithm.

In the experimental analysis in section 3 we compare
this original repair strategy (which we call simple re-

pair) with an improved strategy (smart repair). The
new strategy defines an upper limit for the number of
swaps executed by all insertion-sort calls. If this limit
is reached the algorithms stops and starts from scratch
calling quicksort with the exact compare function. The
smart repair strategy avoids the very bad performance
of insertion sort in presence of difficult input data (see
section 3).

2.2 Sorted Sequences

Sorted Sequences are used in plane sweep algorithms
to dynamically maintain the objects intersected by the
sweep line at its current position (see [5] for details).
They can be implemented by balanced binary search
trees or skiplists ([7]). The most fundamental operation
is the locate function that finds the position of a given
objects among all existing objects.

In the structural filtering version of a search tree (or
skiplist) log n cheap floating-point comparisons are used
to find the (approximative) position of x among the
leaves of the tree (see Figure 1). Since search trees are
acyclic termination of the locate step is guaranteed even
in presence of arbitrary bad errors in the compare func-
tion.

Checking whether the computed position p is correct
or not can be done by at most 2 exact comparisons with
the neighbor leaves. For the repair step we assume that
the distance between p and the correct position is d.

In the simple repair strategy we use linear search start-

locate(x)

log n cheap compares

2 exact compares

Figure 1: Search tree using structural filtering.

ing at p to find the correct position. This takes d exact
compares. For the smart repair strategy we use finger
search which uses at most log d exact compares.

2.3 Multi-dimensional Search Trees

Multi-dimensional trees were first introduced in [1].
They exist in different variants, such as range-, segment-
, interval- and priority-search trees. We concentrate on
two-dimensional range-trees in this paper. Similar re-
sults can be obtained for the other variants.

Range trees consist of a primary binary tree data
structure that stores secondary search trees in each
node. Orthogonal range queries can be realized by lo-
cating the two search paths to the x coordinates in
the primary tree and then perform a sequence of at
most 2 log n one-dimensional range queries on secondary
search trees. As for simple search trees and skiplists ter-
mination is guaranteed since the underlying data struc-
ture is acyclic.

The simple repair strategy uses (as in the case of
skiplists) a linear search to find the correct positions in
the primary and secondary search trees and the smart

repair stops linear searching in the secondary structures
as soon as some upper bound for the total steps exe-
cuted in all linear searches is reached. Then the query
is repeated from scratch with predicate-filtering.

2.4 Point Location

We consider the problem of locating a point p in a given
triangulation T . The well-known walking-algorithm
presented in [8] and [5] starts in an arbitrary trian-
gle of T and traverses the faces of T along a straight
ray directed towards p until the triangle containing p is
reached. In every step it uses the orientation predicate

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

to find an edge through which the ray leaves the current
triangle. In the structural filtering version of this algo-
rithm the cheap floating-point version of the orientation
predicate is used during the walk. Since the underlying
structure is not acyclic we have to guard against pos-
sible loops to guarantee termination of the walk. This
can easily be done by marking every visited triangle. As
soon as a marked triangle is visited again, the algorithm
starts a new walk from the current position now using
the exact orientation predicate. We use a simple repair
strategy. The check of correctness is done by using the
exact orientation predicate to find out whether the last
triangle really contains point p. If it fails a new exact
walk is started at the current position. This strategy
behaves good for both simple and difficult input data
(see section 3).

2.5 Delaunay Triangulations

We use the flipping algorithm presented in [9] to con-
struct the delaunay triangulation of a given set of points
S. This algorithms has shown to be very effective in
practice. It starts with constructing an arbitrary trian-
gulation of S and then applies a local transformation
called flipping to the edges of the triangulation until ev-
ery edge e fulfills the Delaunay property, i.e. the two
triangles ajdacent to e have both empty circumscrib-
ing circles. The checking of the delaunay is done by a
in-circle test applied to the corresponding vertices.

In the structural filtering version of this algorithm
floating-point arithmetic is used in the in-circle tests.
Note however that an edge e must not be flipped if the
qudrilateral with diagonal e is not convex. Otherwise,
the resulting structure would not be a legal triangula-
tion. Since the in-circle test may be incorrect we have
to test for convexity using exact arithmetic before the
flipping can be done.

The repair step is simply done by calling the exact
variant of the flipping algorithm (using exact arithmetic
in the in-circle tests) on the possibly incorrect result of
the first step. If the result was correct the repair step
does nothing then checking all edges for the Delaunay
property. If the result was wrong, errors are corrected
by the exact flipping algorithm. Here the checking takes
linear time and we cannot expect to be able to reduce
the running time very close to the pure floating-point
version of the algorithm. This is reflected in the exper-
imental results of section 3.5.

2.6 Convex Hulls

Computing the convex hull of a point set S is a fun-
damental geometric problem. One of the most popu-
lar methods to solve this problem is the incremental or
sweep algorithm (see [10]). It works as follows. Sort
S from left to right and initialize the convex hull with

the first three points. Now, add the remaining points
one by one while maintaining the convex hull CH of
the points visited so far by computing the two tangents
from the current point p to CH . The cost of this al-
gorithm is dominated by the running time of the initial
sorting step. We can significantly reduce this cost by
using the structural filtering variant of quicksort pre-
sented in section 2.1. See section 3.4 for experimental
results.

2.7 Line Segment Intersection

The Bently-Ottmann sweep line algorithm ([11]) is a
well-known and efficient method for computing the in-
tersections of a set of straight line segment in the plane.
In the implementation of this algorithm the sorted se-
quence data structure (see section 2.2) can be used to
represent both the event queue und the set of segments
intersecting the sweep line at its current position. See
[5] for a detailed description and analysis. The running
time of sweep algorithms in general is dominated by the
cost of the operations applied to these sorted sequences.
We were able to improve the running time of the seg-
ment intersection algorithm considerably by using the
structural filtering variant of the sorted seqence data
structure presented in section 2.2. This is reflected by
the experimental results in section 3.4.

3 Experiments

In the experiments presented in this section we test our
new structural filtering variants of the presented algo-
rithms and data structures with two different kinds of
input data.

easy input data: we randomly choose points with
30-bit integer coordinates in the square [0 . . . 230

− 1]×
[0 . . . 230

− 1].
difficult input data: we generate difficult inputs in

a systematic way by generating a point set as in the easy
case and translating each point by adding 2k to both x

and y coordinates. Here k is a parameter increasing
from 31 to 100. The effect of the translation is that the
bits of the original coordinates are shifted to the right
and as soon as k reaches 53 (the length of the mantissa
in the IEEE 754 double floating-point format) we start
to loose precision. This loss of precision introduces er-
rors in the input data that grow with increasing values
for k. When k reaches 83 no single bit of the original
input data is available anymore and all coordinates will
become equal.

With the easy input data we can show that our vari-
ants of the presented algorithms and data structures
almost run as fast as pure floating-point implementa-
tions. We use the difficult input to show the robustness
of our implementations in cases where many errors in
the floating-point arithmetic happen. For these cases

19th Canadian Conference on Computational Geometry, 2007

the experiments show that the running time is basically
the same as for floating-point filter implementations.

3.1 Quicksort

Figure 2 shows the result for easy input data. We see
(as expected) that quicksort with structural filtering as
almost as fast the pure floating-point version of the al-
gorithm, which is about as two times as fast as the
floating-point filter version.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

T
im

e

Number of points

Floating Point Filter
Structural Filtering

Floating Point

Figure 2: Quicksort with easy input.

Figure 3 shows the results for difficult input data.
The diagram shows the performance of both simple
and smart repair strategies and compares them to the
floating-point filter version. We can see that running
times increase as soon as the error parameter k reaches
the value of 53 bits and that the simple repair strategy
completely degenerates for very large values of k. The
smart repair strategy however behaves much better for
larger k and reaches about the same performance as the
floating-point filter version in this case.

3.2 Sorted Sequences

For the experiments on sorted sequences we use the
skiplist implementation from the LEDA library (see[5]).

Figure 4 shows the results for easy input data. We
perform 500,000 locate operations on a sorted sequence
containing a increasing number of points. As in the
case of quicksort we again can considerably reduce the
overhead of the floating point filter version and almost
reach the performance of the pure floating point version.

Figure 5 shows the results for difficult input. For
increasing values of the error parameter k the smart
repair strategy (using finger search in the repair step)
performs much better than the simple repair strategy
(using linear search).

 0

 10

 20

 30

 40

 50

 30 40 50 60 70 80 90 100

T
im

e

k

Floating Point Filter
SF with simple repair
SF with smart repair

Figure 3: Quicksort with difficult input.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100000 200000 300000 400000 500000 600000 700000

T
im

e

Number of points

Floating Point Filter
Structural Filtering

Floating Point

Figure 4: Sorted sequence with easy input.

3.3 Range Trees

Figure 6 shows the results for easy input data. As in the
examples before, we can reach almost the same running
time as the pure floating-point version of the tree.

Figure 7 shows the results for difficult input. Here
again we can see the very bad behavior of the simple
repair strategy in presence of a large number of errors
and the much better performance of the smart repair
procedure.

3.4 Point Location, Segment Intersection, and Con-

vex Hull

We present the experimental results for our new variants
of the point location, segment intersection, and convex
hull algorithms, as described in section 2. Figures 8,
10 and 12 show the results for easy input data. In all
cases we can reduce the overhead of the floating point
filter version and can almost reach the performance of

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

 0

 10

 20

 30

 40

 50

 60

 70

 80

 30 40 50 60 70 80 90 100

T
im

e

k

Floating Point Filter
SF with simple repair
SF with smart repair

Figure 5: Sorted sequence with difficult input.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100000 200000 300000 400000 500000 600000 700000

T
im

e

Number of points

Floating Point Filter
Structural Filtering

Floating Point

Figure 6: Range Tree with easy input.

the pure floating-point version.
Figures 9, 11, and 13 shows the results for difficult

input data. As one can see, our repair strategies behaves
good for difficult input data and reaches about the same
performance as the floating-point filter version.

3.5 Delaunay Triangulation

In section 2.5 we presented a new structural filtering
variant of the flipping-algorithm to compute the Delau-
nay triangulation of a set o points in the plane. In this
case, as already mentioned before, we cannot expect to
reach the running time of the pure floating-point ver-
sion. Figure 14 shows our results for easy input data.
and Figure 15 gives the running time for difficult input
data.

 0

 1

 2

 3

 4

 5

 30 40 50 60 70 80 90 100

T
im

e

k

Floating Point Filter
SF with simple repair
SF with smart repair

Figure 7: Range tree with difficult input.

 0

 1

 2

 3

 4

 5

 6

 7

 0 100000 200000 300000 400000 500000 600000

T
im

e

Number of points

Floating Point Filter
Structural Filtering

Float

Figure 8: Point Location with easy input.

 0

 5

 10

 15

 20

 25

 30

 30 35 40 45 50 55 60 65 70 75

T
im

e

k

Floating Point Filter
Structural Filtering

Figure 9: Point Location with difficult input.

19th Canadian Conference on Computational Geometry, 2007

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800

T
im

e

Number of segments

floating point filter
structural filtering

Figure 10: Sweep Segments with easy input.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 30 40 50 60 70 80 90 100

T
im

e

k

Floating Point Filter
Structural Filtering

Figure 11: Sweep Segments with difficult input.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

T
im

e

Number of points

Floating Point Filter
Structural Filtering

Float

Figure 12: Convex Hull with easy input.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 30 40 50 60 70 80 90 100

T
im

e

k

Floating Point Filter
Structural Filtering

Figure 13: Convex Hull with difficult input.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e

Number of points

Floating Point Filter
Structural Filtering

Float

Figure 14: Delaunay Flipping with easy input.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T
im

e

k

Floating Point Filter
Structural Filtering

Figure 15: Delaunay Flipping with difficult input.

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

4 Conclusions

Structural filtering is a very powerful technique to speed
up exact geometric computations. In this paper we
showed that it is possible to achieve almost the same
performance as in a pure floating-point version of the
corresponding algorithm or data structure. Further-
more, one can avoid the bad behavior of simple repair
procedures in presence of very difficult (i.e. high preci-
sion) input data by using clever repair strategies.

References

[1] J.L. Bently: “Multidimensional binary search
trees” Communications of the ACM, 509-517, 1975

[2] Steven Fortune and Christopher J. Van Wyk: “Ef-
ficient Exact Arithmetic for Computational Geom-
etry” Proceedings of the 9th Annual Symposium

on Computational Geometry, San Diego, 163–172,
1993.

[3] Stefan Funke, Kurt Mehlhorn, and Stefan Näher.
Structural Filtering: a Paradigm for Efficient and

Exact Geometric Programs. Computational Geom-
etry, Vol. 31(3), 179–194, 2005.

[4] L. Kettner, S. Näher: “Two Computational Ge-
ometry Libraries: LEDA and CGAL” Handbook of

Discrete and Computational Geometry, Jacob E.
Goodman and Joseph O’Rourke (Editors), Chap-
mann & Hall/CRC, 1435–1463, 2004

[5] K. Mehlhorn and S. Näher. The LEDA Plat-

form for Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

[6] S. Näher: “LEDA, a Platform for Cominatorial and
Geometric Computing”, Handbook of Data Struc-

tures and Applications, Dinesh P. Mehta and Sar-
taj Sahni (Editors), Chapmann & Hall/CRC, 41.1–
41.18, 2004

[7] W. Pugh: “Skip Lists: A Probabilistic Alternative
to Balanced Trees” Communications of the ACM,
668-676, 1990

[8] O. Devillers, S. Pion,M. Teillaud “Walking in a tri-
angulation” Annual Symposium on Computational

Geometry, 106-114, 2001

[9] C. L. Lawson “Transforming Triangulations” Dis-

crete Mathematics, 365-372, 1972

[10] M. Kallay “The Complexity of Incremental Convex
Hull Algorithms” Info. Proc. Letters 19, 197, 1984

[11] J. L. Bentley, T. Ottmann “Algorithms for report-
ing and counting geometric intersections” IEEE

Transactions on Computer Graphics Forum 15,
205-217, 1979

