
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

On the Design and Performance of Reliable Geometric Predicates
using Error-free Transformations and Exact Sign of Sum Algorithms∗

Marc Mörig† Stefan Schirra†

Abstract

We study the relevance of algorithms for exact compu-
tation of the sign of a sum of floating-point numbers and
error-free transformations of arithmetic expressions on
floating-point numbers for the design and implementa-
tion of low-dimensional geometric predicates. In a case
study, we experimentally compare several implementa-
tions of planar orientation test and incircle tests that
make use of such utilities.

1 Introduction

Floating-point computation is very fast, but also in-
herently inaccurate due to rounding errors. Näıvely
applied, floating-point computation can cause fatal er-
rors even with simple geometric algorithms [10], since
floating-point based implementations of geometric pred-
icates can produce wrong and inconsistent results. Most
geometric predicates only involve sign computations for
polynomial expressions in input coordinates or can at
least be implemented like that. If all sign computa-
tions are correct, the predicate yields the correct result.
The exact geometric computation paradigm now only
asks for exactness in the sign computations, and not
for computing exact values of the polynomial expres-
sions. Configurations where a polynomial expression in
a geometric predicate G evaluates to zero are called de-
generate with respect to G.

Much progress has been made on the efficient imple-
mentation of reliable geometric predicates since the im-
portance of the exact geometric computation paradigm
has been widely acknowledged more than a decade ago.
Efficient floating-point filters have been designed and
combined to adaptive evaluation schemes for comput-
ing the sign of an arithmetic expression and are used
in geometric software libraries like cgal and leda.
Floating-point filters compute a sign using fast floating-
point arithmetic first and try to verify the computed
sign, e.g. using an error bound computation. If the ver-
ification fails, they switch to some other method, for
example, some exact arithmetic or a better filter, that

∗Supported by DFG grant SCHI 858/1-1
†Department of Simulation and Graphics, Faculty of Com-

puter Science, Otto von Guericke University Magdeburg, Ger-
many. moerig,stschirr at isg.cs.uni-magdeburg.de

uses higher precision in the floating-point computation
or computes a better error bound. By cascading filters,
sign computations can be made adaptive with respect
to nearness to degeneracy. Prime examples of efficient
cascaded floating-point filters are Shewchuk’s predicates
for orientation and incircle tests [18].

In the mid nineties Ratschek and Rokne presented an
algorithm, called essa for exact sign of sum algorithm,
to compute the sign of a sum of floating-point values ex-
actly [14]. They advocated the use of their algorithm in
computational geometry, see [15] for an overview. Us-
ing error-free transformations, any polynomial expres-
sion on floating-point numbers can be transformed into
a sum of floating-point numbers. Thus an algorithm
like essa is indeed a useful tool for the reliable im-
plementation of a geometric predicate. Applications of
summation algorithms in computational geometry are
discussed by Graillat [6].

In Section 2, we look at some error-free transforma-
tions, especially those used in Shewchuk’s predicates
and essa. In Section 3 we briefly review essa and
some more recent summation algorithms, that can be
used to compute the exact sign of a sum, and discuss
some modifications. Next, in Section 4, we illustrate the
use of sign of sum algorithms and error-free transforma-
tions for the 2D incircle test. Finally, in Section 6, we
report on the results of a case study, where we compare
different reliable implementations of 2D incircle and ori-
entation tests in cgal’s 2D Delaunay triangulation al-
gorithm. Since initial floating-point filters for Delaunay
predicates are already well studied [4, 5, 9, 18], we are
mainly interested in nearly degenerate configurations.
An input point set generator designed for this purpose
is described in Section 5.

2 Error-Free Transformations

Error-free transformations transform an arithmetic ex-
pression involving floating-point numbers into a math-
ematically equivalent expression that is more suited for
a particular purpose, e.g. sign computation. For exam-
ple, a + b can be transformed into chi + clo, such that
a⊕b = chi and a+b = chi+clo. Here we use ⊕,	 and �
to denote floating-point addition, subtraction, and mul-
tiplication, respectively. Note that clo is the rounding
error involved in computing a⊕ b. Efficient algorithms

19th Canadian Conference on Computational Geometry, 2007

for performing this transformation have been devised
for IEEE 754 compliant arithmetic with exact round-
ing to nearest. The transformations are error-free un-
less overflow occurs. twosum(a, b), due to Knuth [11],
uses six floating-point additions and subtractions to
perform this transformation, fasttwosum(a, b), due
to Dekker [2], requires |a| ≥ |b|, but uses only three
operations. Analogously, twoproduct(a, b) computes
floating-point values chi and clo with a � b = chi and
a · b = chi + clo. twoproduct is due to Veltkamp and
Dekker [2] and uses 17 floating-point operations, where
2 × 4 operations are required to split a and b respec-
tively. Thus the cost for a sequence of twoproduct
transformations can be reduced a bit if some numbers
are involved in more than one product. The transforma-
tion is error-free, unless overflow or underflow occurs.

The transformations above use standard IEEE 754
floating-point operations only and do not require ex-
plicit access to mantissa or exponent of a floating-point
number. They are key ingredients in Shewchuk’s effi-
cient adaptive orientation and incircle predicate imple-
mentations [18]. There are also error-free transforma-
tions that involve bit-manipulation and/or exponent ex-
traction. For example, Ratschek and Rokne [14] trans-
form a − b for 252b ≥ a ≥ b > 0 into a′ − b′ where
a′ = (a	 u) and b′ = (b	 u) and u = min{a, 2dlog2 be}.

3 Summation Algorithms

Accurate summation of floating-point numbers has al-
ways been in the focus of research on numerical compu-
tations [7]. In this section we shortly address algorithms
used in our predicate implementations to compute the
sign of a sum exactly.

essa iteratively performs error-free transformations
on the largest positive and the smallest negative num-
ber in the current sum, thereby decreasing the sum of
the absolute values of the summands. The iteration
continues until the sum vanishes, or the largest positive
number clearly dominates the sum of negative ones, or
vice versa. In the original essa implementation [12], the
error-free transformation described above is used. Both
the set of positive summands and the set of negative
summands are sorted initially. Apparently, it has not
been observed so far, that creating a heap order is suf-
ficient. In our implementation, we do not sort and use
fasttwosum for error-free transformation. Our modi-
fication, called revised essa later on, allows us to prove
a better bound on the number of iterations, but there
are also examples where the actual number of iterations
grows.

signk uses a compensated summation [8]: We add
the summands one by one to a current approximation
using twosum. Besides an approximation a, this gives
us a list of error terms e1, e2, . . . Using standard floating-

point addition we sum the error terms and a in this order
and compute an error bound as described by Ogita et
al. [13]. If the error bound does not allow us to reliably
determine the sign, we start over with a and the ei, after
eliminating zeros.

accsign is based on the accsum algorithm by Rump
et al. [16]. accsum computes the value of a sum almost
exactly rounded. It computes either the next larger or
next smaller floating-point number. The algorithm uses
error-free transformations, too, especially transforma-
tions based on splitting floating-point numbers, which is
done without explicitly accessing mantissa or exponent.
The final step of accsum can be omitted in accsign
since we are interested in the sign of the sum only.

4 Case Study Incircle Test

We illustrate the use of error-free transformations and
corresponding sign of sum algorithms for the predicates
of 2D Delaunay computation using cgal’s implemen-
tation based on the Delaunay hierarchy [1, 3]. In this
section, we discuss the incircle predicate only, the ori-
entation predicate is implemented analogously. The in-
circle predicate checks whether s = (sx, sy) is contained
in the circle through points p = (px, py), q = (qx, qy),
and r = (rx, ry). This is tantamount to computing the
sign of the determinant∣∣∣∣∣∣∣∣

px py p2
x + p2

y 1
qx qy q2

x + q2
y 1

rx ry r2
x + r2

y 1
sx sy s2

x + s2
y 1

∣∣∣∣∣∣∣∣
Expanding the determinant results in a polynomial ex-
pression pxqyr2

x +pxqyr2
y + . . . consisting of 48 such sub-

terms. By applying twoproduct six times, a single
term is transformed into a sum of 8 floating-point num-
bers, resulting in a sum of 348 floating-point numbers.
Let S348 be the corresponding arithmetic expression.
Alternatively, we consider∣∣∣∣∣∣

px − sx py − sy (px − sx)2 + (py − sy)2

qx − sx qy − sy (qx − sx)2 + (qy − sy)2

rx − sx ry − sy (rx − sx)2 + (ry − sy)2

∣∣∣∣∣∣
corresponding to a translation that moves the point
s to the origin. Using error-free transformations like
twosum(px,−sx) = phi

x + plo
x , we get∣∣∣∣∣∣

phi
x + plo

x phi
y + plo

y (phi
x + plo

x)2 + (phi
y + plo

y)2

qhi
x + qlo

x qhi
y + qlo

y (qhi
x + qlo

x)2 + (qhi
y + qlo

y)2

rhi
x + rlo

x rhi
y + rlo

y (rhi
x + rlo

x)2 + (rhi
y + rlo

y)2

∣∣∣∣∣∣
Note that some of the �lo values might be zero, because
the corresponding subtraction is exact. Since by Ster-
benz lemma [19] a floating-point subtraction is exact if
the operands differ by a factor of two in size at most, this

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

d=0, rmax=0, f=0% d=63, rmax=0.11, f=25% d=125, rmax=0.11, f=50% d=188, rmax=0.11, f=75%

Intel Sun Intel Sun Intel Sun Intel Sun
org. essa S348 7259 53005 7912 62692 8615 72819 9345 83577
rev. essa S348 2028 5524 2199 5966 2392 6436 2588 6922
accsign S348 598 2894 615 2968 636 3076 659 3195

signk S348 504 2749 505 2752 508 2763 510 2775
org. essa S96:1152 1303 5274 1356 5875 1407 6431 1457 6999
rev. essa S96:1152 526 1676 539 1726 552 1764 566 1813
accsign S96:1152 260 1342 266 1366 272 1393 279 1433

signk S96:1152 208 1044 209 1047 210 1050 213 1057
Shewchuk non-adapt. 546 1943 546 1949 547 1966 552 1985

cgal 36 122 165 688 266 1116 344 1429
ff org. essa S348 31 109 511 5665 885 9884 1177 12965
ff rev. essa S348 32 110 162 455 264 719 343 914
ff accsign S348 31 108 56 222 77 315 93 385

ff signk S348 31 108 49 203 63 279 75 336
ff org. essa S96:1152 31 108 101 588 153 928 193 1177
ff rev. essa S96:1152 32 108 55 180 74 237 88 279
ff accsign S96:1152 31 110 43 159 51 200 59 233

ff signk S96:1152 31 109 39 148 46 182 53 211
ff Shew. non-adapt. 31 108 49 172 62 220 74 259
Shewchuk adaptive 34 106 52 153 67 198 81 234

Table 1: Times in ms for computing the Delaunay triangulation of 10 000 points, averaged over 25 input sets.

is not unlikely! We transform (phi
x +plo

x)2+(phi
y +plo

y)2 =
phi

x phi
x + 2phi

x plo
x + plo

x plo
x + phi

y phi
y + 2phi

y plo
y + plo

y plo
y and

analogous terms into a sum using twoproduct, where
a product incurring �lo is computed only if �lo 6= 0.
The resulting sum has between 4 and 12 summands.
Then we use cofactor expansion on the last column. We
transform (qhi

x + qlo
x)(rhi

y + rlo
y) − (qhi

y + qlo
y)(rhi

x + rlo
x)

and resembling expressions into a sum with between
4 and 16 summands. Each remaining product of two
sums is then transformed into a single sum by applying
twoproduct to each pair of summands, resulting in
a sum with between 32 to 384 summands. Overall, we
get an expression with between 96 to 1152 summands,
called S96:1152. We combine both expressions S348 and
S96:1152 with the sign of sum algorithms listed in the
previous section, optionally with an initial float-filter
from cgal.

We compare the resulting incircle predicate imple-
mentations with Shewchuk’s adaptive incircle code [17,
18]. Shewchuk uses error-free transformations as well
to transform the determinant into a sum. However,
he uses a clever staged evaluation strategy that com-
putes approximations with increasing accuracy, using
so-called floating-point expansions. Comparison with
an error bound is used to verify the sign of the current
approximation. At each stage, some computations from
previous stages are reused, leading to an adaptive pred-

icate. Shewchuk also provides non-staged and hence
non-adaptive predicate implementations. Furthermore,
we compare with cgal’s exact predicates inexact con-
structions kernel. cgal first uses a semi-static filter,
and then a dynamic filter [4]. If both fail, cgal’s exact
number type MP Float is used. It is this well-engineered
cascaded filter that we use in the initial phase of the fil-
tered versions (ff . . .) of our predicate implementations.

5 Test Data Generator

We are most interested in the performance of implemen-
tations of the incircle predicate for difficult instances,
since state-of-the-art float-filters can be used to solve
easy cases efficiently. In order to force a Delaunay tri-
angulation algorithm to perform more difficult tests the
generated test data contains points almost on a circle
with no other points in its interior: First, we create a
set D of d disks with a random radius 0 < r ≤ rmax

and place a certain percentage f of the points (almost)
on the boundary of their union, bd(∪D), cf. Table 1.
Next, the remaining points are generated uniformly in
the complement of the disks. All points are generated
inside the unit circle. In order to get nearly degenerate
point sets we use exact arithmetic to compute a point on
a circular arc of bd(∪D) and then round it to a nearby
floating-point point closest to the circular arc.

19th Canadian Conference on Computational Geometry, 2007

6 Results and Conclusions

We run experiments on both a PC with an Intel Core
2 Duo T5500 processor with 1.66 Ghz, using g++ 4.1
and cgal 3.2.1, and on a Sun Blade Station 1000 with
0.9 Ghz, using g++ 3.3.3 and cgal 3.2. Average run-
ning times for 25 input sets with 10 000 points each are
shown in Table 1. The timings for the most competitive
algorithms are visualized in Figure 1. Interestingly, the
rankings for the two platforms differ. The experiments

S
h
ew

chu
k

ad
ap

tive

ff
S
h
ew

.
n
on

-ad
ap

t.

ff
rev.

essa
S

9
6
:1

1
5
2

ff
a
c
c
sig

n
S

3
4
8

ff
a
c
c
sig

n
S

9
6
:1

1
5
2

ff
sig

n
k

S
3
4
8

ff
sig

n
k

S
9
6
:1

1
5
2

S
h
ew

chu
k

ad
ap

tive

ff
S
h
ew

.
n
on

-ad
ap

t.

ff
rev.

essa
S

9
6
:1

1
5
2

ff
a
c
c
sig

n
S

3
4
8

ff
a
c
c
sig

n
S

9
6
:1

1
5
2

ff
sig

n
k

S
3
4
8

ff
sig

n
k

S
9
6
:1

1
5
2

SunIntel

20

40

60

80

200

100

300

Figure 1: Times for 10 000 points, with 50% points on
the boundary.

show that an initial filter step is absolutely necessary,
because otherwise the predicates based on the sign of
sum algorithms, which are apparently non-adaptive, are
too slow for non-degenerate point sets. Original essa is
obviously not competitive whereas our revised version
comes close to the best ones, especially on the Sun plat-
form. Filtered signk for S96:1152 performs best on both
platforms. On Sun, Shewchuk’s adaptive predicates are
next, while they are at rank 4 on Intel. We observed,
that the predicates based on S96:1152 perform relatively
better on larger input sets. Because of the locality of the
Delaunay triangulation algorithm and Sterbenz’ lemma,
the fraction of sign evaluations of type S96:1152 where
the actual number of summands is small increases with
the size of the input point sets, as illustrated in the
figure below.

96 ≤ 384

96 ≤ 384

96 ≤ 384

100 points

1 000 points

10 000 points

The figure shows the fraction of sign evaluations of type
S96:1152 with 96, with at most 348, and with more than
348 summands for the generated input sets. Overall,
filtered signk for S96:1152 is always a good choice, only
for small points sets of 100 points Shewchuk’s adaptive
predicates perform somewhat better on Sun.

References

[1] cgal, Computational Geometry Algorithms Library.
http://www.cgal.org.

[2] T. J. Dekker. A floating-point technique for extend-
ing the available precision. Num. Math., 18(2):224–242,
1971.

[3] O. Devillers. The Delaunay hierarchy. Int. J. of Found.
of Comput. Sci., 13(2):163–180, 2002.

[4] O. Devillers and S. Pion. Efficient exact geometric pred-
icates for Delaunay triangulations. In ALENEX 2003,
pages 37–44.

[5] S. Fortune. Numerical stability of algorithms for 2-d
Delaunay triangulations. Int. J. of Comput. Geom. and
Appl., 5:193–213, 1995.

[6] S. Graillat. Applications of fast and accurate summa-
tion in computational geometry. Research Report 03,
Laboratoire LP2A, Université de Perpignan, 2005.

[7] N. J. Higham. Accuracy and Stability of Numerical Al-
gorithms. SIAM, 2. edition, 2002.

[8] W. Kahan. Further remarks on reducing truncation
errors. Comm. of the ACM, 8(1):40, 1965.

[9] M. Karasick, D. Lieber, and L. R. Nackman. Efficient
delaunay triangulation using rational arithmetic. ACM
Trans. Graph., 10(1):71–91, 1991.

[10] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C.-
K. Yap. Classroom examples of robustness problems
in geometric computations. In ESA 2004, LNCS 2321,
pages 702–713.

[11] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The Art Of Computer Programming. Addison-Wesley,
3. edition, 1997.

[12] G. Mackenbrock, H. Ratschek, and J. G. Rokne. Ex-
perimental reliable code for 2d convex hull construction.
http://pages.cpsc.ucalgary.ca/~rokne/convex/.

[13] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and
dot product. SIAM J. on Sci. Comput., 26(6):1955–
1988, 2005.

[14] H. Ratschek and J. G. Rokne. Exact computation of
the sign of a finite sum. Appl. Math. Computation,
99(2-3):99–127, 1999.

[15] H. Ratschek and J. G. Rokne. Geometric computations
with interval and new robust methods: applications in
computer graphics, GIS and computational geometry.
Horwood Publishing, Ltd., 2003.

[16] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-
point summation. Technical Report 05.1, Faculty of In-
formation and Communication Science, Hamburg Uni-
versity of Technology, 2005.

[17] J. R. Shewchuk. Companion web page to [18].
http://www.cs.cmu.edu/~quake/robust.html.

[18] J. R. Shewchuk. Adaptive precision floating-point arith-
metic and fast robust geometric predicates. Discrete
Comput. Geom., 18(3):305–363, 1997.

[19] P. H. Sterbenz. Floating-Point Computation. Prentice-
Hall, 1974.

