
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

On the Design and Performance of Reliable Geometric Predicates
using Error-free Transformations and Exact Sign of Sum Algorithms∗

Marc Mörig† Stefan Schirra†

Abstract

We study the relevance of algorithms for exact compu-
tation of the sign of a sum of floating-point numbers and
error-free transformations of arithmetic expressions on
floating-point numbers for the design and implementa-
tion of low-dimensional geometric predicates. In a case
study, we experimentally compare several implementa-
tions of planar orientation test and incircle tests that
make use of such utilities.

1 Introduction

Floating-point computation is very fast, but also in-
herently inaccurate due to rounding errors. Näıvely
applied, floating-point computation can cause fatal er-
rors even with simple geometric algorithms [11], since
floating-point based implementations of geometric pred-
icates can produce wrong and inconsistent results. Most
geometric predicates only involve sign computations for
polynomial expressions in input coordinates or can at
least be implemented like that. If all sign computa-
tions are correct, the predicate yields the correct result.
The exact geometric computation paradigm now only
asks for exactness in the sign computations, and not
for computing exact values of the polynomial expres-
sions. Configurations where a polynomial expression in
a geometric predicate G evaluates to zero are called de-
generate with respect to G.

Much progress has been made on the efficient imple-
mentation of reliable geometric predicates since the im-
portance of the exact geometric computation paradigm
has been widely acknowledged more than a decade ago.
Efficient floating-point filters have been designed and
combined to adaptive evaluation schemes for comput-
ing the sign of an arithmetic expression and are used
in geometric software libraries like cgal and leda.
Floating-point filters compute a sign using fast floating-
point arithmetic first and try to verify the computed
sign, e.g. using an error bound computation. If the ver-
ification fails, they switch to some other method, for
example, some exact arithmetic or a better filter, that

∗Supported by DFG grant SCHI 858/1-1
†Department of Simulation and Graphics, Faculty of Com-

puter Science, Otto von Guericke University Magdeburg, Ger-
many. moerig,stschirr at isg.cs.uni-magdeburg.de

uses higher precision in the floating-point computation
or computes a better error bound. By cascading filters,
sign computations can be made adaptive with respect
to nearness to degeneracy. Prime examples of efficient
cascaded floating-point filters are Shewchuk’s predicates
for orientation and incircle tests [20].

In the mid nineties Ratschek and Rokne presented
an algorithm, called essa for exact sign of sum algo-
rithm, to compute the sign of a sum of floating-point
values exactly [15]. They advocated the use of their al-
gorithm in computational geometry, see [6, 16, 17]. Us-
ing error-free transformations, any polynomial expres-
sion on floating-point numbers can be transformed into
a sum of floating-point numbers. Thus an algorithm
like essa is indeed a useful tool for the reliable im-
plementation of a geometric predicate. Applications of
summation algorithms in computational geometry are
discussed by Graillat [7].

In Section 2, we look at some error-free transforma-
tions, especially those used in Shewchuk’s predicates
and essa. In Section 3 we briefly review essa and
some more recent summation algorithms, that can be
used to compute the exact sign of a sum, and discuss
some modifications. Next, in Section 4, we illustrate the
use of sign of sum algorithms and error-free transforma-
tions for the 2D incircle test. Finally, in Section 6, we
report on the results of a case study, where we compare
different reliable implementations of 2D incircle and ori-
entation tests in cgal’s 2D Delaunay triangulation al-
gorithm. Since initial floating-point filters for Delaunay
predicates are already well studied [4, 5, 10, 20], we are
mainly interested in nearly degenerate configurations.
An input point set generator designed for this purpose
is described in Section 5.

2 Error-Free Transformations

Error-free transformations transform an arithmetic ex-
pression involving floating-point numbers into a math-
ematically equivalent expression that is more suited for
a particular purpose, e.g. sign computation. We use
⊕,	,� and � to denote the floating-point operations
corresponding to +,−, · and / respectively. We assume
IEEE 754 double precision with exact rounding to near-
est. Then, if neither overflow nor underflow occurs, the
maximum relative error of a single operation is ε = 2−53.

19th Canadian Conference on Computational Geometry, 2007

The sum, a + b can be transformed into chi + clo,
such that a ⊕ b = chi and a + b = chi + clo. Note
that clo is the rounding error involved in computing
a ⊕ b. Efficient algorithms for performing this trans-
formation have been devised for IEEE 754 compli-
ant arithmetic with exact rounding to nearest. The
transformations are error-free unless overflow occurs.
twosum(a, b), due to Knuth [12], uses six floating-point
additions and subtractions to perform this transforma-
tion, fasttwosum(a, b), due to Dekker [2], requires
|a| ≥ |b|, but uses only three operations.

Analogously, twoproduct(a, b) computes floating-
point values chi and clo with a� b = chi and a · b = chi +
clo. twoproduct is due to Veltkamp and Dekker [2]
and uses 17 floating-point operations. A substep con-
sists of splitting a (and b) into a = ahi + alo where
ahi and alo use at most half of their mantissa. Thus
the products ahi � bhi etc. can be computed without
rounding error. A single split takes 4 operations. Thus
the cost for a sequence of twoproduct transforma-
tions can be reduced a bit if some numbers are involved
in more than one product. twoproduct is error-free,
unless overflow or underflow occurs.

The transformations above use standard IEEE 754
floating-point operations only and do not require ex-
plicit access to mantissa or exponent of a floating-point
number. They are key ingredients in Shewchuk’s effi-
cient adaptive orientation and incircle predicate imple-
mentations [20].

There are also error-free transformations that involve
bit-manipulation and/or exponent extraction. For ex-
ample, Ratschek and Rokne [15] transform a − b into
a′ − b′, with the requirement, that 1

2ε−1b ≥ a > 0 and
1
2ε−1b ≥ a > 0. The transformation has the property,
that a′ and −b′ have the same sign if neither of them is
zero. If the exponents of a and b are equal, a′ = a 	 b
and b′ = 0. Otherwise, if a > b, they set a′ = (a 	 u)
and b′ = (b	u) where u = 2dlog2 be. The remaining case
a < b for unequal exponents is handled analogously.

3 Summation Algorithms

Accurate summation of floating-point numbers has al-
ways been in the focus of research on numerical compu-
tations [8]. In this section we shortly address algorithms
used in our predicate implementations to compute the
sign of s =

∑n
i=1 ai where a1, . . . , an are floating-point

numbers.

essa iteratively performs error-free transformations
on the largest positive and the smallest negative num-
ber in the current sum, thereby decreasing the sum of
the absolute values of the summands. The iteration
continues until the sum vanishes, or the largest positive
number clearly dominates the sum of negative ones, or

vice versa. In the original essa implementation [13], the
error-free transformation described above is used. Both
the set of positive summands and the set of negative
summands are sorted initially. Apparently, it has not
been observed so far, that creating a heap order is suf-
ficient. In our implementation, we do not sort and use
fasttwosum for error-free transformation. Our mod-
ification, called “revised essa” later on, allows us to
prove a better bound on the number of iterations, but
there are also examples where the actual number of iter-
ations grows. Both essa variants always return the cor-
rect sign, they are not affected by overflow or underflow.
The number of summands is limited to 1

2ε−1 = 252.

signk is based on compensated summation, a well
known approach to increase the accuracy of floating-
point summation [9]. First we add the summands one
by one using twosum and store the results in the orig-
inal variables. Besides an approximation an, this gives
us a list of error terms an−1, . . . , a1. To improve the ap-
proximation we sum up a1 to an−1 on the fly and add
an last, resulting in s′.
1: s′ = 0
2: σ = 0
3: chi = a1

4: for i = 2, . . . , n do
5: (chi, clo) = twosum(chi, ai)
6: ai−1 = clo

7: s′ = s′ ⊕ clo

8: σ = σ ⊕ |clo|
9: an = chi

10: s′ = s′ ⊕ an

Ogita et al. [14] analyze this algorithm and essentially
prove the following error bound.

Theorem 1 ([14]) Let s′ and σ be computed by the al-
gorithm above and

β = σ �
(
2εn� (1− 2εn)

)
∆ = ε|s′| ⊕ (β ⊕ 2ε2|s′|).

Then, for n < 1
2ε−1 = 252 and if neither overflow nor

underflow occurs, we have |s′ − s| ≤ ∆.

The original error bound [14] contains another term 3η,
where η is the smallest positive floating-point number.
This makes the bound valid also in the case underflow
occurs in the computation of ∆. No underflow can occur
in the computation of s′. We observed however, that
the usage of the denormalized floating-point number 3η
slows down the computation significantly.

The sign of s is positive if s′ > ∆ and negative if s′ <
−∆. If the error bound does not allow us to determine
the sign, we eliminate the zeros among the ai. If no
summands are left, the sign is zero, otherwise we start
over with the new ai. The correctness of this iterated

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

application of compensated summation combined with
the error bound follows from Theorem 1. We next show
that it also terminates.

Lemma 2 If n < 1
4ε−1 = 251 and neither overflow nor

underflow occurs, then after a finite number of iterations
|s′| > ∆ and the algorithm terminates.

Proof. Let (chi, clo) = twosum(a, b). Then chi ⊕ clo =
chi and |clo| ≤ ε|chi|, since clo is the rounding error
involved in the computation a ⊕ b. Furthermore also
|chi| ⊕ |clo| = |chi|. If chi and clo have the same sign
or clo = 0 this holds since |chi| ⊕ |clo| = |chi ⊕ clo|.
Now let us consider the case chi > 0 and clo < 0.
Then chi + clo < chi < chi − clo and chi 	 clo will be
rounded to chi since the distance from chi to the next
larger floating-point number is at least as large as the
distance to the next smaller floating-point number and
ties are resolved using round-to-even. The remaining
case follows by symmetry.

Each twosum operation in the algorithm replaces
ai−1 and ai by the error and ai−1 ⊕ ai, in that or-
der. Intuitively, the algorithm moves the more signifi-
cant parts of the sum towards an. After some iterations
we have ai−1⊕ai = ai for i = 2, . . . , n and the twosum
operations will not lead to changes any more. Thus,
at the end of that iteration, s′ = an, σ = |an−1| and
|an−1| ≤ ε|an|. It follows that

β = σ �
(
2εn� (1− 2εn)

)
≤ (1 + ε)2|an−1|

2εn

1− 2εn

≤ (1 + ε)2ε|an|
2εn

1− 2εn

≤ (1 + ε)2ε|an|.

Here we use the fact that a } b ≤ (1 + ε)|a ◦ b| for any
operation } ∈ {⊕,	,�,�}. Furthermore

∆ = ε|s′| ⊕ (β ⊕ 2ε2|s′|)
≤ (1 + ε)ε|an|+ (1 + ε)2β + (1 + ε)22ε2|an|
≤ (1 + ε)ε|an|+ (1 + ε)4ε|an|+ (1 + ε)22ε2|an|
≤ 4(1 + ε)4ε|an|
< |an| = |s′|.

�

signk will also terminate if overflow or underflow oc-
curs, although it may return a wrong sign. An underflow
may only occur in the computation of the error bound
∆, making it smaller. This will not hinder termina-
tion. If an overflow occurs in twosum, clo will be NaN.
All subsequent computations involving clo will produce
NaNs and hence ∆ and s′ will be NaN too. Comparisons
involving NaNs always evaluate to false, so the algorithm

will terminate if the error bound check is implemented
as “not (s′ ≤ ∆)” instead of “s′ > ∆”. If an overflow
occurs in the computation of s′ or ∆, the algorithm may
or may not terminate in the current iteration, but it will
terminate in a later iteration, since it will end up in the
case that twosum operations do not lead to changes
any more. Then no overflow occurs in the computation
of s′ and ∆.

accsign is based on the accsum algorithm by Rump
et al. [18]. accsum computes one of the floating-point
numbers adjacent to s. If s is itself a floating-point num-
ber or s is in the gradual underflow range, it is computed
exactly. The algorithm uses error-free transformations,
too, especially a splitting transformation. A summand
ai is split into iahi

i and alo
i , where ai = ahi

i + alo
i and

|alo
i | ≤ M for some M that depends on the maximum

magnitude and the number of summands. The split is
done without accessing exponent or mantissa. The ahi

i

are summed up into an approximation s′. Thanks to the
splitting and the choice of M this summation is free of
rounding errors. If necessary, the remaining summands
are summed up using the same technique and added to
s′. For details we refer to [18]. Since some substeps in
this iterative procedure are not necessary for computing
the sign of s, they are omitted in accsign. accsign is
not affected by underflow but the number of summands
is limited to ε−

1
2−2 − 2 ≈ 226 which is not a restriction

in practice.

4 Case Study Incircle Test

We illustrate the use of error-free transformations and
corresponding sign of sum algorithms for the predicates
of 2D Delaunay computation using cgal’s implemen-
tation based on the Delaunay hierarchy [1, 3]. In this
section, we discuss the incircle predicate only, the ori-
entation predicate is implemented analogously. The in-
circle predicate checks whether s = (sx, sy) is contained
in the circle through points p = (px, py), q = (qx, qy),
and r = (rx, ry). This is tantamount to computing the
sign of the determinant∣∣∣∣∣∣∣∣

px py p2
x + p2

y 1
qx qy q2

x + q2
y 1

rx ry r2
x + r2

y 1
sx sy s2

x + s2
y 1

∣∣∣∣∣∣∣∣
Expanding the determinant results in a polynomial ex-
pression pxqyr2

x +pxqyr2
y + . . . consisting of 48 such sub-

terms. By applying twoproduct six times, a single
term is transformed into a sum of 8 floating-point num-
bers, resulting in a sum of 348 floating-point numbers.
Let S348 be the corresponding arithmetic expression.

19th Canadian Conference on Computational Geometry, 2007

Alternatively, we consider∣∣∣∣∣∣
px − sx py − sy (px − sx)2 + (py − sy)2

qx − sx qy − sy (qx − sx)2 + (qy − sy)2

rx − sx ry − sy (rx − sx)2 + (ry − sy)2

∣∣∣∣∣∣
corresponding to a translation that moves the point
s to the origin. Using error-free transformations like
twosum(px,−sx) = phi

x + plo
x , we get∣∣∣∣∣∣

phi
x + plo

x phi
y + plo

y (phi
x + plo

x)2 + (phi
y + plo

y)2

qhi
x + qlo

x qhi
y + qlo

y (qhi
x + qlo

x)2 + (qhi
y + qlo

y)2

rhi
x + rlo

x rhi
y + rlo

y (rhi
x + rlo

x)2 + (rhi
y + rlo

y)2

∣∣∣∣∣∣
Note that some of the �lo values might be zero, because
the corresponding subtraction is exact. Since by Ster-
benz lemma [21] a floating-point subtraction is exact if
the operands differ by a factor of two in size at most,
this is not unlikely! We transform

(phi
x + plo

x)2 + (phi
y + plo

y)2 =

phi
x phi

x + 2phi
x plo

x + plo
x plo

x + phi
y phi

y + 2phi
y plo

y + plo
y plo

y

and analogous terms into a sum using twoproduct,
where a product incurring �lo is computed only if �lo 6=
0. The resulting sum has between 4 and 12 summands.
Then we use cofactor expansion on the last column. We
transform

(qhi
x + qlo

x)(rhi
y + rlo

y)− (qhi
y + qlo

y)(rhi
x + rlo

x)

and resembling expressions into a sum with between 4
and 16 summands. Each remaining product of two sums
is then transformed into a single sum by applying two-
product to each pair of summands, resulting in a sum
with between 32 to 384 summands. Overall, we get an
expression with between 96 to 1152 summands, called
S96:1152. We combine both expressions S348 and S96:1152

with the sign of sum algorithms listed in the previous
section, optionally with an initial float-filter from cgal
as discussed below.

We compare the resulting incircle predicate imple-
mentations with Shewchuk’s adaptive incircle code [19,
20]. Shewchuk uses error-free transformations as well
to transform the determinant into a sum. However,
he uses a clever staged evaluation strategy that com-
putes approximations with increasing accuracy, using
so-called floating-point expansions. Comparison with
an error bound is used to verify the sign of the current
approximation. At each stage, some computations from
previous stages are reused, leading to an adaptive pred-
icate. Shewchuk also provides non-staged and hence
non-adaptive predicate implementations. Furthermore,
we compare with cgal’s exact predicates inexact con-
structions kernel. cgal first uses a semi-static filter,
and then a dynamic filter [4]. If both fail, cgal’s exact
number type MP Float is used. It is this well-engineered

cascaded filter that we use in the initial phase of the fil-
tered versions (ff . . .) of our predicate implementations.

Remember that some of our predicate implementa-
tions based on error-free transformations are not guar-
anteed to work if overfow or underflow occurs. Imple-
mentations aiming for ease-of-use must therefore detect
and handle overflow and underflow or use different tech-
niques. Efficient detecting and handling such cases is a
task for future work.

5 Test Data Generator

We are most interested in the performance of implemen-
tations of the incircle predicate for difficult instances,
since state-of-the-art float-filters can be used to solve
easy cases efficiently. In order to force a Delaunay tri-
angulation algorithm to perform more difficult tests the
generated test data contains points almost on a circle
with no other points in its interior: First, we create a
set D of d disks with a random radius 0 < r ≤ rmax

and place a certain percentage f of the points (almost)
on the boundary of their union, bd(∪D), cf. Table 1.
Next, the remaining points are generated uniformly in
the complement of the disks. All points are generated
inside the unit circle. In order to get nearly degenerate
point sets we use exact arithmetic to compute a point on
a circular arc of bd(∪D) and then round it to a nearby
floating-point point closest to the circular arc.

6 Results and Conclusions

We run experiments on both a PC with an Intel Core 2
Duo T5500 processor with 1.66 Ghz, using g++ 4.1 and
cgal 3.2.1, and on a Sun Blade Station 1000 with 0.9
Ghz, using g++ 3.3.3 and cgal 3.2. Average running
times for 25 input sets with 10 000, 1 000 and 100 points
each are shown in Tables 1 - 3 respectively. Timings for
the most competitive algorithms are visualized there as
well. Interestingly, the rankings depend on the size of
the point sets and also differ for the two platforms. The
experiments show that an initial filter step is absolutely
necessary, because otherwise the predicates based on
the sign of sum algorithms, which are apparently non-
adaptive, are too slow for non-degenerate point sets.
For point sets without degeneracies, Shewchuk’s adap-
tive predicates and all predicates using cgal’s cascaded
filter perform equally well. This shows that for such in-
put sets, the sign can almost always be deduced by the
filter. For the other point sets, the rankings do not de-
pend on the number of degenerate configurations. Orig-
inal essa is obviously not competitive whereas our re-
vised version comes close to the best ones, especially
on the Sun platform. Predicates based on S96:1152 per-
form relatively better on larger input sets. Because of
the locality of the Delaunay triangulation algorithm and

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Sterbenz’ lemma, the fraction of sign evaluations of type
S96:1152 where the actual number of summands is small
increases with the size of the input point sets, as illus-
trated in Figure 1.

96 ≤ 384

96 ≤ 384

96 ≤ 384

100 points

1 000 points

10 000 points

Figure 1: Fraction of sign evaluations of type S96:1152

with 96, with at most 348, and with more than 348
summands for the generated input sets.

For point sets of 10 000 points, filtered signk for
S96:1152 performs best on both platforms. On Sun,
Shewchuk’s adaptive predicates are next, while they are
at rank 4 on Intel. With decreasing size of the input sets,
Shewchuk’s adaptive predicates perform relatively bet-
ter. While filtered signk for S96:1152 stays the fastest on
Intel, on Sun for sets of 100 points Shewchuk’s adaptive
predicates perform somewhat better. Since the com-
putation times for small input sets are generally small,
overall, filtered signk for S96:1152 is a good choice for
the implementation of the incircle predicate.

References

[1] cgal, Computational Geometry Algorithms Library.
http://www.cgal.org.

[2] T. J. Dekker. A floating-point technique for extend-
ing the available precision. Num. Math., 18(2):224–242,
1971.

[3] O. Devillers. The Delaunay hierarchy. Int. J. of Found.
of Comput. Sci., 13(2):163–180, 2002.

[4] O. Devillers and S. Pion. Efficient exact geometric pred-
icates for Delaunay triangulations. In ALENEX 2003,
pages 37–44.

[5] S. Fortune. Numerical stability of algorithms for 2-d
Delaunay triangulations. Int. J. of Comput. Geom. and
Appl., 5:193–213, 1995.

[6] M. Gavrilova and J. G. Rokne. Reliable line segment in-
tersection testing. Computer-Aided Design, 32(12):737–
745, 2000.

[7] S. Graillat. Applications of fast and accurate summa-
tion in computational geometry. Research Report 03,
Laboratoire LP2A, Université de Perpignan, 2005.

[8] N. J. Higham. Accuracy and Stability of Numerical Al-
gorithms. SIAM, 2. edition, 2002.

[9] W. Kahan. Further remarks on reducing truncation
errors. Comm. of the ACM, 8(1):40, 1965.

[10] M. Karasick, D. Lieber, and L. R. Nackman. Efficient
delaunay triangulation using rational arithmetic. ACM
Trans. Graph., 10(1):71–91, 1991.

[11] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C.-
K. Yap. Classroom examples of robustness problems
in geometric computations. In ESA 2004, LNCS 2321,
pages 702–713.

[12] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The Art Of Computer Programming. Addison-Wesley,
3. edition, 1997.

[13] G. Mackenbrock, H. Ratschek, and J. G. Rokne. Ex-
perimental reliable code for 2d convex hull construction.
http://pages.cpsc.ucalgary.ca/~rokne/convex/.

[14] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and
dot product. SIAM J. on Sci. Comput., 26(6):1955–
1988, 2005.

[15] H. Ratschek and J. G. Rokne. Exact computation of
the sign of a finite sum. Appl. Math. Computation,
99(2-3):99–127, 1999.

[16] H. Ratschek and J. G. Rokne. Exact and optimal con-
vex hulls in 2d. Int. J. of Comput. Geom. and Appl.,
10(2):109–129, 2000.

[17] H. Ratschek and J. G. Rokne. Geometric computations
with interval and new robust methods: applications in
computer graphics, GIS and computational geometry.
Horwood Publishing, Ltd., 2003.

[18] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-
point summation. Technical Report 05.1, Faculty of In-
formation and Communication Science, Hamburg Uni-
versity of Technology, 2005.

[19] J. R. Shewchuk. Companion web page to [20].
http://www.cs.cmu.edu/~quake/robust.html.

[20] J. R. Shewchuk. Adaptive precision floating-point arith-
metic and fast robust geometric predicates. Discrete
Comput. Geom., 18(3):305–363, 1997.

[21] P. H. Sterbenz. Floating-Point Computation. Prentice-
Hall, 1974.

19th Canadian Conference on Computational Geometry, 2007

d=0, rmax=0, f=0% d=63, rmax=0.11, f=25% d=125, rmax=0.11, f=50% d=188, rmax=0.11, f=75%

Intel Sun Intel Sun Intel Sun Intel Sun
org. essa S348 7259 53005 7912 62692 8615 72819 9345 83577
rev. essa S348 2028 5524 2199 5966 2392 6436 2588 6922
accsign S348 598 2894 615 2968 636 3076 659 3195

signk S348 504 2749 505 2752 508 2763 510 2775
org. essa S96:1152 1303 5274 1356 5875 1407 6431 1457 6999
rev. essa S96:1152 526 1676 539 1726 552 1764 566 1813
accsign S96:1152 260 1342 266 1366 272 1393 279 1433

signk S96:1152 208 1044 209 1047 210 1050 213 1057
Shewchuk non-adapt. 546 1943 546 1949 547 1966 552 1985

ff MP Float (cgal) 36 122 165 688 266 1116 344 1429
ff org. essa S348 31 109 511 5665 885 9884 1177 12965
ff rev. essa S348 32 110 162 455 264 719 343 914
ff accsign S348 31 108 56 222 77 315 93 385

ff signk S348 31 108 49 203 63 279 75 336
ff org. essa S96:1152 31 108 101 588 153 928 193 1177
ff rev. essa S96:1152 32 108 55 180 74 237 88 279
ff accsign S96:1152 31 110 43 159 51 200 59 233

ff signk S96:1152 31 109 39 148 46 182 53 211
ff Shew. non-adapt. 31 108 49 172 62 220 74 259
Shewchuk adaptive 34 106 52 153 67 198 81 234

0

25

50

75

100

In
te

l

Shewchuk adaptive
ff Shewchuk non-adapt.
ff rev. essa S96:1152
ff accsign S348
ff accsign S96:1152
ff signk S348
ff signk S96:1152

0

100

200

300

f = 0% f = 25% f = 50% f = 75%

Su
n

Table 1: Times in ms for computing the Delaunay triangulation of 10 000 points, averaged over 25 input sets.

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

d=0, rmax=0, f=0% d=13, rmax=0.24, f=25% d=26, rmax=0.24, f=50% d=38, rmax=0.24, f=75%

Intel Sun Intel Sun Intel Sun Intel Sun
org. essa S348 653 4616 701 5357 753 6198 817 6981
rev. essa S348 182 497 194 529 208 568 225 602
accsign S348 54 262 55 266 56 270 57 276

signk S348 46 253 46 253 46 254 46 252
org. essa S96:1152 136 537 143 602 149 664 151 723
rev. essa S96:1152 54 170 56 172 57 177 58 182
accsign S96:1152 27 131 27 134 28 135 28 139

signk S96:1152 22 111 22 110 22 110 22 111
Shewchuk non-adapt. 52 175 52 175 52 177 51 177

ff MP Float (cgal) 2 9 19 78 34 143 45 193
ff org. essa S348 2 9 62 650 114 1279 158 1760
ff rev. essa S348 2 9 18 49 32 87 44 117
ff accsign S348 2 9 5 22 8 34 10 44

ff signk S348 2 9 4 20 6 30 8 39
ff org. essa S96:1152 2 9 13 80 21 140 27 185
ff rev. essa S96:1152 2 8 6 18 8 27 11 33
ff accsign S96:1152 2 9 4 15 5 21 6 26

ff signk S96:1152 2 9 3 14 4 18 5 22
ff Shew. non-adapt. 2 9 4 16 6 23 8 28
Shewchuk adaptive 2 8 4 13 6 18 7 22

0

2.5

5

7.5

10

In
te

l

Shewchuk adaptive
ff Shewchuk non-adapt.
ff rev. essa S96:1152
ff accsign S348
ff accsign S96:1152
ff signk S348
ff signk S96:1152

0

10

20

30

40

f = 0% f = 25% f = 50% f = 75%

Su
n

Table 2: Times in ms for computing the Delaunay triangulation of 1 000 points, averaged over 25 input sets.

19th Canadian Conference on Computational Geometry, 2007

d=0, rmax=0, f=0% d=3, rmax=0.5, f=25% d=5, rmax=0.55, f=50% d=8, rmax=0.53, f=75%

Intel Sun Intel Sun Intel Sun Intel Sun
org. essa S348 47.1 306.6 50.2 356.1 53.3 417.8 56.4 475.5
rev. essa S348 13.0 35.4 13.8 37.8 14.6 40.1 15.4 42.9
accsign S348 4.1 19.3 4.1 19.7 4.2 19.7 4.2 20.2

signk S348 3.5 19.2 3.5 19.3 3.5 19.0 3.4 19.1
org. essa S96:1152 13.9 50.1 13.9 57.9 14.4 64.0 14.9 69.5
rev. essa S96:1152 5.5 15.8 5.4 16.6 5.5 16.2 5.6 16.6
accsign S96:1152 2.8 12.3 2.7 12.7 2.8 12.3 2.8 12.5

signk S96:1152 2.4 11.6 2.3 11.9 2.3 11.1 2.3 11.1
Shewchuk non-adapt. 4.2 13.1 4.2 13.3 4.1 12.9 4.1 13.1

ff MP Float (cgal) 0.2 0.7 1.6 6.5 3.2 14.7 4.5 19.9
ff org. essa S348 0.2 0.7 4.8 52.0 10.2 122.4 14.6 170.5
ff rev. essa S348 0.2 0.6 1.4 3.9 2.8 8.2 4.0 11.2
ff accsign S348 0.2 0.6 0.4 1.8 0.7 3.2 0.9 4.2

ff signk S348 0.2 0.7 0.3 1.6 0.5 2.9 0.7 3.7
ff org. essa S96:1152 0.2 0.7 1.3 7.5 2.4 19.3 3.5 24.9
ff rev. essa S96:1152 0.2 0.6 0.6 1.6 0.9 3.0 1.3 3.8
ff accsign S96:1152 0.2 0.7 0.4 1.3 0.5 2.3 0.7 2.8

ff signk S96:1152 0.2 0.7 0.3 1.2 0.4 2.0 0.5 2.4
ff Shew. non-adapt. 0.2 0.7 0.4 1.3 0.6 2.1 0.8 2.6
Shewchuk adaptive 0.2 0.7 0.3 1.0 0.5 1.4 0.6 1.8

0

0.25

0.5

0.75

1

In
te

l

Shewchuk adaptive
ff Shewchuk non-adapt.
ff rev. essa S96:1152
ff accsign S348
ff accsign S96:1152
ff signk S348
ff signk S96:1152

0

1

2

3

4

f = 0% f = 25% f = 50% f = 75%

Su
n

Table 3: Times in ms for computing the Delaunay triangulation of 100 points, averaged over 25 input sets.

