
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Fast Additive Constant Approximation Algorithms for The Safe Deposit
Boxes Problem with Two and Three Currencies

Boaz Ben-Moshe∗ Yefim Dinitz†

Abstract

The following variant of the knapsack problem is con-
sidered; Suppose there are n safe deposit boxes, each
containing known amounts of m currencies, and there
is a certain need for each currency. The problem is to
open the minimal number of boxes, in order to collect
at least the prescribed amount of each currency. In a
technical report, by Y. Dinitz and A. Karzanov, it is
shown that this problem is NP-hard, and that its non-
degenerate case can be solved within an absolute error
of at most m− 1 in O(nm+1) time, assuming m is con-
stant. They also suggested an O(n2) algorithm, with an
absolute error of at most 1, for the general case of two
currencies.

We suggest new combinatorial algorithms with signif-
icantly improved runtime for the two and three currency
cases (2D, 3D). The 2D algorithm runs in O(n log2 n)
time, while the 3D algorithm runs in O(n2 log2 n) time.
In addition to linear programming techniques, used in
previous works, we also use the parametric search ap-
proach of N. Megiddo [10] for decreasing the running
time. The degenerate case is formulated as an interest-
ing problem, solved by combinatorial techniques.

1 Introduction

Let us consider the following integer optimization Safe
Deposit Boxes (SDB) problem, suggested by A. S. Kro-
nrod and described and solved in [3]. It is a special
case of the multidimensional knapsack problem that has
been extensively studied, particularly in the maximiza-
tion version [1, 4, 5, 9].

Given n safe deposit boxes, where the ith box contains
ai dollars and bi euros. The problem is to choose the
minimal number of boxes so that the total amount of
dollars obtained is at least A and that of euros is at
least B. It is assumed that all boxes together contain
at least A dollars and B euros. The generalization to
the case of m currencies is straightforward.

SDB can be represented as the following Boolean
Programming problem:

∗Department of Computer Science, College of Judea and
Samaria, Ariel 44837, Israel, benmo@yosh.ac.il

†Department of Computer Science, Ben-Gurion University,
Beer-Sheva, 84105, Israel. dinitz@cs.bgu.ac.il

min
∑n

i=1 xi , such that
∑n

i=1 ajixi ≥ Aj , where:
j = 1, ...,m; i = 1, ..., n; xi ∈ {0, 1}; ∀i,j : aji ≥ 0.

Previous work: SDB was introduced by Kron-
rod with the following preamble: “It is clear how
to solve any safe deposit box problem with a single
currency: the most valuable boxes should be selected,
till the target amount is reached. But can it be
generalized for two currencies?” This problem turned
out to be NP-hard; however, a combinatorial algorithm
that solves it with an absolute error of at most 1 was
found. Such a quasi-optimal solution is formed by a
set of boxes most valuable w.r.t. a certain exchange
rate dollar:euro, and the algorithm finds such a rate.
Moreover, for the non-degenerate case of m currencies,
for an arbitrary m, it was observed that, for an
instance of Safe Deposit Boxes, if an extreme-point
fractional solution of its linear relaxation is given, the
ceiling rounding of that solution is an (m− 1)-absolute
approximation for the original problem. The algorithm
of [3] for two currencies works in time O(n2), including
the degenerate case. For finding a fractional solution
as above, an algorithm of O(nm+1) runtime (assuming
m is a constant) is suggested there (see a similar result
in [8]). Note that there are only a few non-trivial
approximation algorithms with a constant additive
error, in the literature [6, 7, 12].

One can find several applications of the SDB prob-
lem, involving non-convertible resources (”currencies”)
related to any objects (“boxes”). For example, Moret
[11] points out that in Operating Systems, the need
to kill (or roll back) the smallest number of processes,
in order to release essential resources (e.g. CPU and
memory), may be formulated as such a problem.

Our contribution: This paper improves the O(n2)
running time of Dinitz and Karzanov, by presenting
an O(n log2 n) runtime algorithm for the two curren-
cies case with additive error one. Our algorithms make
use of parametric search techniques [2, 10], while ad-
dressing some specific details of SDB. For the case of
three currencies, we suggest an O(n2 log2 n) algorithm,
improving the LP-rounding approach with running time
O(n4) of Dinitz and Karzanov. Both algorithms are also
extended to deal with the degenerate case using new
combinatorial methods.

19th Canadian Conference on Computational Geometry, 2007

2 Duality-Based Bound for Two Currencies

In this section, following [3], we analyze in detail some
aspects of the two currencies Safe Deposit Boxes prob-
lem, in order to acquire a base for combinatorial al-
gorithms; most of the following observations can be
straightforwardly generalized to the case of an arbitrary
number of currencies. Let us introduce variables α and
β (they are, in fact, the dual variables of the linear relax-
ation of SDB). We say that the exchange rate α : β
is defined if values α ≥ 0 of one dollar and β ≥ 0 of one
euro in some third (imaginary) currency are fixed. Let

vi = vi(α, β) = α · ai + β · bi

be the value of box i, w.r.t. rate α : β. We say the one
box is “better” than another one, if it is more valuable,
w.r.t. the considered rate.

A feasible solution is called quasi-optimal if the
number of selected boxes is not greater than minimal
possible plus one. The following theorem is proved in
the next section.

Theorem 1 For any Safe Deposit Box instance, there
exists a (quasi-optimal) exchange rate, such that a cer-
tain quasi-optimal solution consists of boxes most valu-
able according to this rate. Moreover, such a rate exists
in the set {1 : 0; 0 : 1 = 1 : ∞; 1 : ai−aj

bj−bi
, 1 ≤ i < j ≤

n}. (see full version for detailed proof).

Any subset of boxes as well as the set of corresponding
numbers I ∈ 1, n will be called a plan. Let us denote
v(I) =

∑
i∈I vi. A plan is called feasible w.r.t. the first

constraint (by dollar) or w.r.t. the second constraint (by
euro) if

∑
i∈I ai ≥ A or, respectively,

∑
i∈I bi ≥ B.

Further on, we rely on the following simple statement
stemming directly from non-negativity of ai, bi, α, and
β.

Lemma 2 (Monotonicity Lemma) Let I and I ′ be
two plans where I ′ ⊃ I. Then v(I ′) ≥ v(I). Moreover,
if I is feasible w.r.t. some constraint, then I ′ is also
feasible w.r.t. the same constraint.

Optimality and quasi-optimality of plans constructed
in the subsequent part of the paper are based on the
following bounds.

Lemma 3 (Lower Bound Lemma) Let there exist
an exchange rate α : β and an integer k, such that some
plan consisting of k boxes most valuable w.r.t. α : β is
infeasible by both dollar and euro. Then the optimum is
at least k + 1 (see full version for the proof).

Now, let us see how the non-increasing ordering of
boxes by value w.r.t. the rate 1 : β (henceforth, “order-
ing at β”) changes, when β changes from 0 to ∞. We

call the value β(i, j) = ai−aj

bj−bi
, if defined and positive,

a swap value. It is easy to see that when β passes
through this value, boxes i and j “swap” in the order:
before it, the box with more dollars is better, at it, they
are equal, while after it, the box with more euros is
better.

Let us give a geometrical interpretation. In Fig-
ure 1(a), the straight lines represent graphically the
dependency vi(β) = bi · β + ai. The abscissa of the
intersection point of straight lines i and j, if positive, is
the swap value of β(i, j).

β

1

2

3
4

β(1, 3)

1

2
3

1

4

2

3

1

4

ββ′ β∗ β′′

#A(β)

#B(β)

valuevalue
(a) (b)

Figure 1: (a): Geometric representation of box values as
function of β. (b): Minimal number of best boxes sat-
isfying constraints A and B, as a (monotone) function
of β.

3 Non-Degenerate Two Currencies Case

Based on theorem 1, a naive algorithm for the (non-
degenerate) two currencies case can be designed, using
the following two steps: (i) find all equilibrium values of
β. (ii) test each β for a quasi-optimal solution. The ini-
tial idea of [3] was to compute and sort all swap values of
β, along with its swapping pair of boxes. After that, be-
ginning from the first β value, and subsequently update
it for every β-interval, from the left to right, up to find-
ing the β∗ swap value. Then, a quasi-optimal solution
is obtained as described above. The dominating time is
O(n2 log n) for sorting the O(n2) swap values of β; the
time for other operations is O(n2). In [3], an improve-
ment of the running time to O(n2) is presented. Using
methods from computational geometry, all intersection
points of n straight lines in the positive quadrant, in the
non-decreasing order of β, can be found in time O(n2).

3.1 An improved algorithm for the two currencies
case - Non-Degenerate

Our new algorithm also begins with analyzing the cases
β = 0,∞. After that, it uses binary search over the set
of swap values of β, instead of its linear scanning (see
Fig. 1(b)).

Lemma 4 For any value of β, it is possible to answer
the query whether the rate 1 : β is quasi-optimal, or on
which side (lesser or greater) of this value such a rate
exists, in O(n log n) time.

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Proof. For a given value of β0. Sort the boxes by v(β0)
(in decreasing order). Let #A(β0) be the smallest pre-
fix of sorted boxes that satisfies the A-constraint. If it
turns out that |#A(β0)−#B(β0)| ≤ 1, a quasi-optimal
solution would be easily found. Otherwise, if #A(β0) is
greater than #B(β0)+ 1, a quasi-optimal value of β ex-
ists to the right of β0, while in the other symmetric case,
it exists to the left of it. It is easy to see that the time
of sorting is dominating, so the time bound O(n log n)
for answering the query holds, as required. ¤

For each analyzed value of β, the algorithm sorts
boxes w.r.t. it, processes them, and defines how to con-
tinue the binary search, according to Lemma 4. It is
known that, given q straight lines in the plane, and an
integer r : 1 ≤ r ≤ q(q − 1)/2, it is possible to find
their rth pairwise intersection in the increasing order
along any axis in time O(q log q) [2]. Using this method,
the total time for any iteration of the binary search is
O(n log n), so the total running time of the algorithm is
O(n log2 n).

Theorem 5 For the case of two currencies, an SDB
problem can be solved, with an additive error at most
1, in O(n log2 n) time. (The 2D degenerate case is dis-
cussed in the full version).

4 Non-Degenerate Three Currencies Case

Let us analyze the non-degenerate case of the SDB
problem with three currencies, denoted by P. Our goal
is to find a quasi-optimal solution, which in this case
is allowed to have an additive error at most 2. In this
section, we assume the general position case, that is,
when no two objects (e.g., intersection lines or points)
coincide, if there exists an infinitesimal modification of
the data making them distinct.

Let us consider the 3D space with coordinates β, γ,
and v. For any box, i, its value, vi = vi(β, γ), is the
linear function ai + β · bi + γ · ci, which defines the box
i plane in 3D, Pi. For any two boxes, if their planes
intersect, then the projection of their intersection is the
border straight line between the two areas of equal or-
der of these two boxes. Let us denote it by lij = lji, for
boxes i and j. Let us partition the positive quadrant
of the (β, γ)-plane into the regions of equal box value
order. The total division of the plane into regions is
formed by cutting it by all those straight lines. Observe
that the intersection point of three planes Pi, Pj , and
Pr is seen in the projection picture as the common in-
tersection point of the three lines lij , ljr, lri. General
position implies that no fourth line goes through such
a triple intersection point, and that no other triple line
intersection is at this point. On the other hand, the in-
tersection of some two lines, lij , lrs, is just the common
projection of two crossing, but not intersecting in 3D.

Let us project all these line intersection points to the
γ axis, resulting in the set of swap values of γ, divid-
ing the γ axis into the γ-intervals. Note that there is
O((n2)2) = O(n4) line intersection points (only O(n3)
of them are three planes intersections). By [2], for any
r, the rth one of them, in the increasing order of γ, can
be found in O(n2 log n) time.

4.1 Auxiliary two currencies problem

Let us analyze the situation by the sweeping line
method. Let us consider the straight line in the (β, γ)-
plane defined by fixing γ = γ0. We define the auxiliary
γ0-two currencies SDB problem as follows. The cur-
rencies are named AC and B, the values of box i are
ai + γ0 · ci and bi, respectively, and the constraint right
hand sides are A + γ0 · C and B, respectively. Let us
denote the leftmost equilibrium value of β, for the γ0-
problem, by β∗(γ0) (see the definition in Section 3). It
is easy to see that any feasible solution of the origi-
nal problem is a feasible solution for γ0-problem. The
inverse is not guaranteed, but it can be easily shown
that any solution feasible for γ0-problem must satisfy
the constraint B and at least one of constraints A and
C. The direction of the following analysis is to build a
binary search algorithm to find an equilibrium value γ∗,
such that the preference order ¹β∗(γ∗) will satisfy all the
three constraints almost simultaneously, resulting in a
quasi-optimal solution.

Let us see how the structure of the auxiliary two cur-
rencies γ0-problem is related to the structure of the orig-
inal three currencies problem. Fixing γ = γ0 defines the
(β, v) plane P (γ0). Its intersection with plane Pi is the
straight line li(γ0), which is the graph of the value of box
i, defined as v(β, γ0) = (ai +γ0 ·ci)+β ·bi. The intersec-
tions of P (γ0) with the lines lij define the swap values
of β, at the γ0-problem, where the order of boxes i and
j swaps. These points together break the β axis into the
intervals of constant box order. In fact, these intervals
are the intersections of P (γ0) with the aforementioned
regions of constant box order in the (β, γ)-plane. As a
consequence, moving the sweep line in the interval be-
tween the neighboring swap values of γ does not change
the combinatorial structure of the parametrized auxil-
iary problem: the sequence of β-intervals, together with
the box orders in them, remains the same, while the
swap values of β move without interchanging, in their
order. We denote the values related to the γ0-problem
by ·(γ0), and the point (β∗(γ0), γ0), in the β, γ-plane,
by M∗(γ0).

4.2 Binary Search

Let us define our binary search rule as follows. Sim-
ilarly to the two currencies case, we first analyze val-
ues 0 and ∞ of γ, resulting either in a quasi-optimal

19th Canadian Conference on Computational Geometry, 2007

solution, or in the [0,∞] search area, at the γ axis,
where #A(M∗(0)) < #C(M∗(0)) and #C(M∗(∞)) <
#A(M∗(∞)); in what follows, the former (resp., latter)
inequality, will be called A/C- (resp., C/A-)situation,
for some value of γ. For γ = 0, if #A(M∗(0)) ≥
#C(M∗(0)), we can output the quasi-optimal solution
of the 0-problem. For γ = ∞, if #C(M∗(∞)) ≥
#A(M∗(∞)), we can output the quasi-optimal solution
of the ∞-problem. This solution is found as follows:
we divide the boxes into groups with the same c value;
we take boxes, group by group, by decreasing c, until
both constraints A and B are satisfied; if this happens
in the same group, we solve the two currencies problem
for this group separately, otherwise, we remain with just
the one currency problem, for this group.

The opposite A/C- and C/A-situations at the ends
of the search area are maintained during the binary
search, as follows. At any iteration, after finding the rth

swap value γr, we define the (γr−)- and (γr+)-auxiliary
problems. If there is the C/A-situation at the (γr−)-
problem, we continue with the first half of the search
area, before the rth swap value; if there is the A/C-
situation at the (γr+)-problem, we continue with the
second half, after this value; if there is the switch from
A/C to C/A around γr, we define γ∗ = γr, and find
a quasi-optimal solution by means of Algorithm Local,
given below. When the search area shrinks to a single
[γ′, γ′′] interval between two neighboring swap values of
γ, we find a quasi-optimal solution by means of Algo-
rithm Sandwich, given below. For an illustration of
these two cases, see Figure 2.

β β

γ

(a) (b)

γ

γ∗

M∗(γ∗+)

A/C

C/A

γ∗+

γ∗−

M∗(γ∗−)

M∗(γ∗) γ∗

γ′

1

γ′′

γ′

M∗(γ′+)

M∗(γ′+

1)

(β∗, γ∗)

C/A A/C

A/C

Figure 2: Final phase: (a) ’local’ case. (b) ’sandwich’
case.

The (γr−)-auxiliary problem is, in fact, the (γr − ε)-
problem, for an infinitesimal ε. Its definition is combina-
torially simulated as follows. Consider the γr-problem.
The three boxes corresponding to the straight lines in-
tersecting at M∗(γr) have some order at the β-interval
before β∗(γr), which flips to the inverse one at the β-
interval after it. At the new problem, the former order
undergoes swapping, step by step, at the three straight
lines “below” M∗(γr), in their order w.r.t. the β direc-
tion. All the other components of the γr-problem do
not change, by the general position assumption. The
(γr+)-problem is defined similarly.

Theorem 6 For the case of three currencies, an SDB
problem can be solved, with an additive error at most 2,
in O(n2 log2 n) time.

5 Conclusion and Future work

We suggested new combinatorial algorithms, for the 2D
and 3D cases of the SDB problem. The suggested algo-
rithms improved the best known runtime significantly.
Moreover a new combinatorial method was suggested
to deal with degenerate input. This method eliminates
the need for numerical methods which are hard to use
in practice.

Several aspects of the SDB problem remain un-
solved; One question would be whether the suggested
algorithms may be improved or generalized to higher
dimensions. Another open problem has to do with the
lower bound. While there is some evidence that the 3D
case of the SDB problem might be 3Sum−Hard, the
true time complexity of this problem remains unclear.

Acknowledgments. The authors are grateful to R.
Ravi and E. Omri for useful comments.

References

[1] D. Bertsimas and R. Demir. An approximate dynamic
programming approach to multidimensional knapsack
problems. Management Sci 48(4), 550-565 (2002).

[2] R. Cole, J. Salowe, W. Steiger, and E. Szemerédi. An
optimal-time algorithm for slope selection. SIAM J.
Comput., 18, no. 4 (1989), 792–810.

[3] E. A. Dinitz and A. V. Karzanov. Boolean Optimization
Problems with Uniform Constraints. Reprint, Institute
of Control Sci., Moscow, 1978, 42 p. (in Russian).

[4] M. Dyer and A. Frieze. Probabilistic analysis of the
multi-dimensional knapsack problem. Math. of OR 14,
162-176 (1989).

[5] A. Freville and G. Plateau. An efficient preprocessing
procedure for the multidimensional 0-1 knapsack prob-
lem. Disc. Appl. Math. 48, 189-212 (1994).

[6] M. Fürer and B. Raghavachari. Approximating the
Minimum-Degree Steiner Tree to Within One of Op-
timal. J. of Algorithms 17 (1994), 409–423.

[7] T. Jordan. On the Optimal Vertex Connectivity Aug-
mentation, J. of Combinatorial Theory, ser. B , 63
(1995), 8–20.

[8] H. W. Lenstra, Jr. Integer Programming with a fixed
number of variables, Math. of Oper. Res. 8, no. 4 (1983),
538–548.

[9] S. Martello, P. Toth. Knapsack Problems – Algorithms
and Computer Implementations, John Wiley and Sons,
Chichester et al., 1990.

[10] N. Megiddo. Applying parallel computation algorithms
in the design of serial algorithms. J. of ACM., 30, no. 4
(1983), 852–865.

[11] B. M. E. Moret. The Theory of Computation. Addison-
Wesley Publ. Co, Reading, Mass., 1997.

[12] V. G. Vizing. On an Estimate of the Chromatic Class
of a p-Graph. Diskret. Analiz. 3 (1964), 25-30.

