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An Improved Bound for the Affine Sylvester Problem

Jonathan Lenchner ∗

Abstract

In 2006, Lenchner and Brönnimann showed that in the
affine plane, given n lines, not all parallel and not all
passing through a common point, there had to be at
least n

6 ordinary points. The present paper improves
on this result to show that there must be at least 2n−3

7
ordinary points, except for a single arrangement of 6
lines with one ordinary point.

1 Introduction

In 1893 J. J. Sylvester posed the following celebrated
problem [9]: Given a finite collection of points in the
plane, not all lying on a line, show that there exists a
line which passes through precisely two of the points.
Sylvester’s problem was reposed by Erdős in 1944 [3]
and solved the same year by Gallai [5]. In its dual for-
mulation, Gallai’s result states that an arrangement of n
lines in the real projective plane, not all passing through
a common point, must contain a point of intersection of
just two lines, a so-called ordinary point.

In 1958 Kelly and Moser [6] showed that an arrange-
ment of n lines as in the statement of Sylvester’s prob-
lem, must contain at least 3n/7 ordinary points. They
also gave an example of 7 lines with exactly 3 ordinary
points. In 1993 Csima and Sawyer [2] showed that ex-
cept for the case of n = 7 there must be at least 6n/13
ordinary points.

Sylvester’s problem can also be considered in the
affine plane. Given an arrangement of n lines in the
affine plane, not all of which are parallel and not all of
which pass through a common point, must there always
be an ordinary point? In fact there must be, as first
pointed out by Lenchner in [7]. The existence of such
ordinary points was used recently by Ackerman, et al
[1], in their resolution of Murty’s Magic Configuration
Problem. Until now, the best known lower bound for the
number of such affine ordinary points has been n/6, as
given by Lenchner and Brönnimann [8]. In the present
paper, we improve this result to (2n − 3)/7 as long as
the arrangement is not the arrangement of 6 lines with
one ordinary point in Figure 1.

Although our problem concerns the affine plane we
shall do most of our reasoning in the usual 2D model
of the projective plane. A projective ordinary point
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Figure 1: An affine arrangement with six lines and a
single (finite) ordinary point.

Figure 2: An example of a line l with two ordinary
points, p and q, attached through respective shaded tri-
angles. q is attached to l through an infinite triangle.

is an ordinary point that may lie on the line at infin-
ity. An affine or finite ordinary point is an ordinary
point which necessarily resides off the line at infinity.
Unless otherwise qualified, ordinary points in projective
arrangements are assumed to be projective and ordinary
points in affine arrangements are assumed to be affine.

2 Results from Prior Work

The projective versions of the following definitions and
lemmas are due to Kelly and Moser [6]. See Felsner [4]
for a contemporary treatment.

Definition 1 Say that an ordinary point p is attached
to a line l, not containing p, if l together with two lines
crossing at p form a (possibly infinite) triangular cell of
the arrangement. See Figure 2.

Lemma 1 Four Attachment Lemma: In any ar-
rangement of lines, an ordinary point can have at most
4 lines counting that point as an attachment.
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Proof. An ordinary point is contained in 2 crossing
lines, and hence is a vertex of at most 4 faces. It can
therefore be attached to at most 4 lines. ¤

The following Lemma actually applies equally to pro-
jective or affine arrangements, though we consider it
first as a lemma in the projective plane.

Lemma 2 Three Clause Lemma: Let T be a trian-
gle formed by three lines of an arrangement A. Let l be
one of the defining lines of T , [p, q] the interval of in-
tersection of l and T , and (p, q) the subinterval of [p, q]
not containing p, q. If

(i) T is not a cell of the arrangement,
(ii) (p, q) contains no ordinary points, and
(iii) every line intersecting the interior of T also in-

tersects [p, q]
then there exists an ordinary point x attached to l
through some triangle contained in T .

Figure 3: An illustration of the setup and conclusion
of the Three Clause Lemma. The triangle T in the
Lemma is the finite triangle 4(p, q, r) in the figure. The
hollow vertex is the ordinary point attached to l in T
guaranteed by the Lemma.

Proof. If necessary, rotate the arrangement so that T
is a finite triangle. Let x be the vertex of A in T , not on
l, which has the smallest distance to l. If x is ordinary
then by the assumptions of the Lemma it is attached
to l via a triangle in T and we are done. On the other
hand suppose there are three lines l1, l2, l3 intersecting
in x, and let v1, v2, v3 be their respective intersection
points with l. By assumption, all the vi lie in [p, q]
and we assume v2 lies between v1 and v3. Since v2 is
not ordinary there is a line m 6= l2 entering T at v2.
The intersection of m and l1 or m and l3 is of smaller
distance to l than x, a contradiction. ¤

We observe that the Lemma holds in the affine plane
so long as the triangle T is a finite triangle, the “fi-
nite” triangle possibly containing two parallel lines for
edges (the important factor being that the line at infin-
ity should not divide T into two distinct components).

Definition 2 A line is said to be of projective type
(i, j) if it contains i projective ordinary points and has
j projective ordinary points attached to it.

In what follows we assume that we have an arrange-
ment in which all lines contain at least three projective
vertices. Arrangements having a line with just two ver-
tices are easily seen to have at least n − 2 projective
ordinary points and at least n−2

2 affine ordinary points.
The Three Clause Lemma (Lemma 2) can then be used
to prove the following two lemmas:

Lemma 3 Projective (0,3+)-Lemma: If a line l
of an arrangement A contains no projective ordinary
points, then there are at least 3 projective ordinary
points attached to l.

Lemma 4 Projective (1,2+)-Lemma: If a line l of
an arrangement A contains a single projective ordinary
point, then the line l has at least 2 projective ordinary
points attached to it.

The following are from Lenchner and Brönnimann [8]:

Definition 3 A line is said to be of affine type (i, j)
if it contains i affine ordinary points and has j affine
ordinary points attached to it.

Lemma 5 Affine (0,1+) Lemma: Let A be a non-
trivial affine arrangement of n lines. If a line l ∈ A
contains no finite ordinary point, then it must have at
least one finite ordinary point attached to it.

Proof. If all the finite vertices are on a single line, then
all but that line must be parallel, and all vertices are
ordinary. Thus, in this case, there is no line without
finite ordinary points.

Otherwise, let l ∈ A be a line without finite ordinary
points and let x be the closest (finite) vertex on one side
of l, and the most extreme to one side if there are several
such vertices. Arguing as in the proof of the Three
Clause Lemma (Lemma 2) we find that x is ordinary
and attached to l. ¤

3 New Contributions

Lemma 6 Sharp Affine (0,1+) Lemma: Let A be
an affine arrangement which is not the six line arrange-
ment with one finite ordinary point in Figure 1, then
at most three lines of A can have affine type (0, 1). All
other lines without finite ordinary points must have two
or more finite attached points.

Proof. (Sketch) Consider any line l ∈ A with no or-
dinary points. If l has only one attached point then
the vertices of A not contained in l are either all to one
side of l or the other - otherwise we could argue as in
the proof of the Affine (0, 1+) Lemma (Lemma 5) to
conclude that a closest vertex to l on either side is an
attached point. Call this property of having all vertices
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to one side or another of a given line, the All-to-One-
Side Property. If we have exactly four lines with the
All-to-One-Side Property, then a simple case analysis
shows that the arrangement must be one of those in
Figure 4.

Figure 4: The four four-line examples with each line
having the All-to-One-Side Property.

If we had four (0, 1) lines these lines would then nec-
essarily form one of the four subarrangements in Figure
4. It is easy to see that adding an additional line not
through the common intersection point in arrangement
(a) forces one of the pre-existing lines to lose the All-to-
One-Side Property, and analogously for arrangement (d)
if we add a line not parallel to the existing lines. Only
cases (b) and (c) are interesting, but in these cases it
is impossible to add lines, keeping the All-to-One-Side
Property for each line while also limiting each line to
no ordinary points unless we have the arrangement in
Figure 1. ¤

Lemma 7 In an affine arrangement, two lines of affine
type (1, 0) cannot intersect in their finite ordinary point
unless the arrangement consists just of two intersecting
lines or is the six line arrangement in Figure 1.

Proof. Suppose two (1, 0) lines l, k intersect at their
ordinary point p. Under the assumption that there are
more than just these two lines, there is another vertex,
q, on one of the lines, say on k. q is not ordinary so there
are at least two lines passing through q in addition to k.
By the Three Clause Lemma (Lemma 2) the two lines
must intersect l at the closest (finite) vertices to p on
either side. Applying the same reasoning to these two
closest vertices to p on l, we see that p is surrounded by
finite triangular cells. An additional application of the
Three Clause Lemma allows us to conclude that each
vertex around p is a 3-crossing.

Now consider the projective cells surrounding the tri-
angular cells about p. Ordering these cells clockwise,
either there are two opposite pairs of projective trian-
gular cells or two consecutive projective (4+)-gons. If
there are opposite pairs of projective triangular cells,

then the triangles meet at a possibly infinite vertex z.
Any additional line would have to pass through z (in
the projective sense if z is infinite) and so create an
additional finite ordinary point on k and l, which is im-
possible. Hence we have just a six line arrangement. If
z were finite it would be attached to both k and l which
is impossible since both lines are of affine type (1, 0).
Hence z must be at infinity. If l1, l2 are the two lines
meeting at z and l3, l4 are the other line contributing
edges to the triangular cells about p, then since there
are no additional lines, l3, l4 similarly cannot intersect
at a finite point and so we have the six line arrangement
in Figure 1.

On the other hand, suppose that there are two consec-
utive projective (4+)-gons surrounding triangular cells
about p; see Figure 5. There are two cases: either (1)

Figure 5: A hypothetical arrangement with two lines,
l, k of affine type (1, 0) with common ordinary point.
We consider the case where two consecutive projective
cells surrounding the triangular cells about p, Q and R
say, are (4+)-gons.

there is a line crossing into and forming an edge of Q in
the northeast quadrant, or there is a line crossing into
and forming an edge of R in the southeast quadrant or
(2) there are no such lines. In case (1) suppose such a
crossing line and edge exists for Q. Then if e1 = [b, d],
there are two successive edges, going either clockwise
around Q with e2 lying on l(a, b) and the line extending
e3 intersecting k at a finite point north of b, or going
counterclockwise around Q with e2 lying on l(c, d) and
the line extending e3 intersecting l at a finite point east
of d. The argument is the same in either case, so sup-
pose we have the latter situation and the line extending
e3 intersects l at a finite point g as depicted in Figure
6. Then, since a line cannot pass through f into Q, we
can apply the Three Clause Lemma to conclude that l
must have a finite ordinary or attached point in [d, g],
contrary to assumption.

With case (1) handled, let us revert back to consid-
ering Figure 5 and case (2), where there are no lines
crossing into and creating an edge of Q in the northeast
quadrant, and also no lines crossing into and forming an
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Figure 6: The hypothetical arrangement with two lines,
l, k of affine type (1, 0) sharing an ordinary point, two
consecutive projective cells surrounding the triangular
cells about p, Q and R which are (4+)-gons, and a line
extending the third edge (e3) in counter-clockwise order
around Q from e1 = [b, d] .

edge of R in the southeast quadrant. Note that a line of
affine type (1, 0) must either have an infinite ordinary
point or two infinite attached points by the Projective
(1, 2+) Lemma (Lemma 4). By our assumption about
Q and R, there cannot be a line parallel to l, so l can-
not contain an infinite ordinary point. We show that l
cannot even have a single infinite attached point. Again
by the assumptions on Q and R, there can be no lines
in the arrangement intersecting l to the east of d. Thus
any pair of parallel lines giving rise to an infinite ordi-
nary point attached to l must intersect l at or to the
west of a. However any pair of parallel lines forming an
attached point to the north of l must not be cut to the
north by either l(a, c) or l(b, d). But unless the parallel
lines are parallel to or identical with l(a, c) and l(b, d),
they will cut into R, which is impossible. They cannot
be parallel with l(a, c) and l(b, d) since then they would
not meet at an ordinary point. Further, if the parallel
lines were actually equal to l(a, c) and l(b, d) we would
have our familiar six line arrangement in Figure 1 - but
actually in this case Q and R would not be (4+)-gons.
The argument is clearly the same for a pair of parallel
lines forming an attached point to the south of l. It
follows that in case (2), l cannot have either an infinite
ordinary or attached point, and so this case is ruled out
and the Lemma is established. ¤

Theorem 8 Let A be an affine arrangement of n not
all parallel lines, which in addition do not all pass
through a common point. If A is not the arrangement
in Figure 1 then A has at least 2n−3

7 (finite) ordinary
points.

Proof. Let p be the fraction of lines with one ordinary
point and no attachments and m the number of (finite)

ordinary points. Then, by virtue of Lemma 7, we have

m ≥ pn, (1)

and, under the assumption that n 6= 6, counting either
ordinary point-line or attached point-line associations,
and applying the Four Attachment Lemma (Lemma 1)
together with the Sharp Affine (0,1+) Lemma (Lemma
6) we have

6m ≥ 3 + pn + 2(n− (pn + 3)), (2)

where 3 is the maximum number of (0, 1) lines, pn is the
number of (1, 0) lines and n− (pn + 3) is the number of
lines with at least a total of two ordinary plus attached
points. The right hand side of (2) is equal to 2n−pn−3,
so that together with −pn ≥ −m from (1), we obtain

m ≥ 2n− 3
7

.

¤

4 Conclusion

Lemma 7 is a generalization of the main lemma of Csima
and Sawyer [2] which states that in any projective ar-
rangement which is not the seven line arrangement due
to Kelly and Moser [6] no two lines of (projective) type
(2, 0) can intersect in an ordinary point.

We conjecture that the asymptotic best lower bounds
for the affine and projective variants of the Sylvester
problem differ just by a constant. However, at present,
this conjecture seems very hard to prove.
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