
CCCG 2007, Ottawa, Ontario, August 20{22, 2007Minimum-sum dipolar spanning tree for points in R3Steven Bitner� Ovidiu DaesuyAbstratWe disuss the problem of �nding the minimum-sumdipolar spanning tree (MSST) in three dimensions. TheMSST problem is a minimization problemwherein givena set S of n points the goal is to �nd two points x; y 2 Sthat minimize the sum jxyj+maxfrx; ryg, where rx andry are the radii of two disks with enters at x and y,respetively, that together over all points in S. Wepresent an O(n2 log2 n) time algorithm that uses O(n2)spae, improving upon the known three dimensional re-sult of O(n2:5+�) time and O(n2) spae.1 IntrodutionFor a set S of n points, the geometri minimumdiameterspanning tree (MDST) is de�ned as a spanning tree of Sthat minimizes the Eulidean length of the longest pathin the tree. In [6℄, it has been proven that there alwaysexists a monopolar or a dipolar MDST, i.e., a MDSTwith only one or two nodes of degree greater than one.A monopolarMDST an be found in O(n logn) time [6℄.For the dipolar MDST the goal is to �nd two pointsx; y 2 S that minimize the sum rx + jxyj + ry, wherejxyj is the Eulidean distane between the points x andy, and rx and ry are the radii of two disks with entersat x and y, respetively, that together over all pointsin S. The best known result is based on semi-dynamidata strutures and ahieves O�(n3�d) time [2℄, wherethe O�-notation hides an o(n�) term, for any onstant� > 0, and d = 1=((d + 1)(bd=2 + 1)) is a onstantthat depends on the dimension d of the point set. For�Department of Computer Siene, University of Texas at Dal-las, stevenbitner�student.utdallas.eduyDepartment of Computer Siene, University of Texas at Dal-las, daesu�utdallas.edu Daesu's researh was partially sup-ported by NSF grant CCF-0635013.

example, 2 = 1=6 and 3 = 1=12.In [4℄ they introdue a related (faility loation) prob-lem, the minimum-sum dipolar spanning tree (MSST)problem, in whih the goal is to �nd two points x; y 2 Sthat minimize the sum jxyj+maxfrx; ryg. They presentexat results when S is a set of n points in Rd, ford 2 f2; 3; 4g. For the planar ase, their algorithmtakes O(n2 logn) time using O(n2) spae. For dimen-sions d = f3; 4g, they suggest a solution based on rangesearhing that takes O(n2:5+�) time using O(n2) spae,for any onstant � > 0.Results. In this paper we onsider �nding a MSST inR3, and present an algorithm that takes O(n2 log2 n)time using O(n2) spae, thus almost mathing the bestknown results for the planar ase. To ahieve this, weprove an interesting result related to the omplexity ofthe ommon intersetion of n balls in R3, of possibledi�erent radii, that are all tangent to a given point p.De�nitions and terminology. For two points a and b,jabj denotes the Eulidean distane from a to b. We use�(a; b) to denote the ball entered at a and having b onits bounding sphere, that is, the radius of the boundingsphere of �(a; b) has length jabj.Let p, q be two points in S, and let � be the planethat is the perpendiular bisetor of the line segmentpq. We use hpq to denote the open half-spae boundedby � and ontaining p. Similarly, hqp denotes the openhalf-spae bounded by � and ontaining q.Given p; q 2 S, the q-farthest point fpq is de�ned asthe farthest point from p that is ontained in the openhalfspae hpq (see Fig. 1). A ritial step in our solutionis �nding fpq for a �xed p and all q 2 S n fpg eÆiently.
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qpFigure 1: p, q, and the q-farthest point fpq.2 Finding the MSST in R3In this setion we present our solution for �nding theMSST in R3. To this end, we extend to R3 a lemmafrom [4℄ (Lemma 1 below), prove a key property onthe omplexity of the ommon intersetion of balls alltangent to a point p, and give an algorithm to omputethe MSST within the laimed time and spae bounds.Lemma 1 The point x 2 S is the q-farthest point fromp i� x is the farthest point from p satisfying q =2 �(x; p).Proof. ) Sine x is the q-farthest point from p, byde�nition, it is ontained in the open half-spae hpq andno other point of S in hpq is farther from p than x. Notethat all points of S \ hqp must have a smaller distaneto q than to p sine the halfspae hqp is de�ned by theorthogonal biseting plane of pq (see Fig. 1). Then, q 2�(x; p) would imply jxqj < jxpj, whih means x 2 hqp,a ontradition. Thus, q =2 �(x; p).( Sine q =2 �(x; p), we have jxpj < jxqj. The halfspaes hpq and hqp are de�ned by the perpendiularbiseting plane of pq, so all points y 2 S with jypj < jyqjare ontained in hpq . (A similar argument an be madefor those points in hqp.) Thus, x is the farthest pointfrom p among those in S \ hpq, whih is preisely thede�nition for the q-farthest point. 2Then, the approah presented in [4℄ for the planarase an be extended to R3. Spei�ally, for a �xedpoint p 2 S, we an label all points q 2 S nfpg with theq-farthest point fpq as follows. First, sort S in order ofnon-inreasing distane from p. Seond, set fpq for allpoints in S to be NULL. Third, pass through the sortedarray and for eah point qi, in order, set fpq to qi for all

points q 2 S that are not ontained by the ball �(qi; p)and for whih fpq is set to NULL. That is, all pointsof S that are in \i�1k=1�(qk; p) but not in �(qi; p), arelabeled with qi, where i = 1; 2; : : : ; n� 1.After the sorting above, the last value in the sortedarray of points in S n p is the point whih has minimumEulidean distane from p. Therefore D(qn; p)�D(p; p)= 0. This implies that fpq is set for all points in S n p.The sorted ordering also ensures that at any step in thealgorithm, fpq for any point qi is the point orrespond-ing to the smallest index j for whih qi 2 \j�1k=1�(qk; p)and qi =2 �(qj; p). This implies that the generi algo-rithm for �nding the q-farthest point for a �xed point pand all q 2 S desribed in [4℄ for the planar ase an alsobe applied in R3. We present this algorithm below andthen show how to perform the omputations assoiatedwith it eÆiently in R3, so that by applying it for eahp 2 S we ahieve the laimed time and spae bounds.Algorithm desription. Without loss of generality,assume that n = 2k for some integer k. Build a ompletebinary tree T with k levels as follows. The leaves of Tare assoiated with the balls �(qi; p), i = 1; 2; : : : ; n, inorder. That is, the leftmost leaf of T stores �(q1; p) andthe rightmost leaf of T stores �(qn; p). Eah internalnode v of T stores a data struture assoiated with theommon intersetion of the balls that are leaf desen-dants of the subtree of T rooted at v. Given a point q,to �nd the smallest index j for whih q 2 \j�1k=1�(qk; p)and q =2 �(qj; p) start at the root of T and follow a pathto a leaf of T , at eah node v along the path performingthe following test: if q is in the ommon intersetionstored at the left hild of v then go to the right hild ofv, else go to the left hild of v. Clearly, the index asso-iated with the leaf where this searh ends orrespondsto the sought j.While the ommon intersetion of n balls all havingthe same radius has omplexityO(n) [5℄, in our ase theradii are not equal, and it is known that if the radii are
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(n2). Thus, it is easy to hek that a diret appliationof the algorithm above, with no other properties (likeequal radii) in plae, for eah p 2 S, would result in asolution for the MSST that takes ubi time and usesquadrati spae, whih is no better than brute fore.The astute reader may have notied that answeringwhether a point q is inside the ommon intersetion ofa set of balls in Rd may not require the atual omputa-tion of the ommon intersetion of the balls. In fat,a ray shooting based approah to answer this queryhas been presented in [1℄, for solving a related prob-lem termed o�-line ball inlusion testing. They use astandard geometri mapping, that lifts the point q to aparaboloid in dimension d + 1 and maps the balls into(d + 1)-dimensional hyperplanes. The intersetions ofthe hyperplanes with the paraboloid, projeted bak todimension d, are the original balls. With this lifting, an-swering whether a point q is inside the ommon interse-tion of n balls in Rd is equivalent to answering whethera point in dimension d+ 1 is below the lower envelopeof a set of n (d + 1)-dimensional hyperplanes. They [1℄showed that using a stati data struture for ray shoot-ing queries, that allows for trade-o�s between the pre-proessing time and the query time, answering the latterquestion for a set of n query points an be done in timeand spae O(n2�2=(bd=2+1) logO(1) n). Sine we have todo this one for eah p 2 S, the overall time to �nd theMSST is O(n3�2=(bd=2+1) logO(1) n). Eah ray shootingdata struture an be disarded after serving its pur-pose, so the overall spae requirement remains O(n2).Thus, for any onstant dimension d, we have:Lemma 2 Given a set S of n points in Rd, d �2 a onstant, the MSST of S an be found inO(n3�2=(bd=2+1) logO(1) n) time and O(n2) spae.For d = 3 or 4, this gives an algorithm for the MSSTwith running time O(n7=3 logO(1) n), whih is betterthan the O(n2:5+�) time algorithm in [4℄.

Surprisingly however, a faster solution an be ob-tained in R3 by atually omputing the ommon inter-setion of the balls stored at internal nodes of T . Forthis, we need the following property.Lemma 3 Consider the ommon intersetion of a setB of n balls in R3, all tangent to a point p. Then eahball an ontribute at most one onneted omponent tothe boundary of the ommon intersetion.Proof. Let a, b be two points on the boundary of theommon intersetion bd(B\) of the balls in B, both onthe same bounding sphere s of some ball in B. Theplane de�ned by a, b, and p intersets s in a irle .Then the geodesi onneting a and b along  on s (anar bab of ) must be in bd(B\); otherwise, if anotherball ontains a and b but not some other point on bpq,then the bounding sphere s0 of that ball de�nes a irle0 in the plane of a, b, and p that has radius greater thanthat of  and ontains p, a ontradition to the fat thats0 is tangent to p. Thus, bd(B\) \ s has at most oneonneted omponent. 2Assuming general position (that is, no more thanthree bounding spheres interset in a point exludingp) Lemma 3 implies the omplexity of bd(B\) is O(n).Lemma 4 Given a set S of n points in R3 and n balls�1;�2; : : : ;�n, all tangent to a point p, there exists adata struture suh that for eah point q 2 S, the small-est index i suh that �i does not ontain q an be foundin O(log2 n) time. This data struture uses O(nlogn)spae and requires O(n log2 n) preproessing time.Proof. The data struture is the omplete binary treeT desribed earlier enhaned with point loation apa-bility at eah internal node. The intersetion of theballs assoiated with the internal nodes is omputed ina bottom-up fashion, using the algorithm in [7℄. Al-though that algorithm was designed for equal radiusballs, we note that the only plae in that algorithmwhere equal radii plays a role is in obtaining the prop-erty that eah ball ontributes only one onneted om-
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Figure 2: Illustrating the proess of determining if aquery point q is ontained in bd(B\v ).ponent to bd(B\). The algorithm omputes the om-mon intersetion at eah internal node by merging theintersetions stored at its hildren and takes O(n log2 n)time over T . Let �0 be the plane through p and tangentto bd(B\). At eah internal node v, we unfold the om-mon intersetion by projeting it from p to a plane �that is parallel to �0 and suh that bd(B\) is sandwihedby � and �0 (see Fig. 2). This unfolding an be done intime linear in the omplexity of the intersetion storedat v. We will refer to the resulting planar subdivision as�v. Finally, we preproess �v for planar point loationqueries [3℄. The overall onstrution time and spae forT is dominated by the omputation of the ommon in-tersetion of balls. Thus, the data struture an be builtin O(n log2 n) time and uses O(n logn) spae.As explained earlier, a query with a point q follows apath from the root to a leaf of T , where the leaf givesthe sought index. To deide whether q is inside theommon intersetion bd(B\v ) stored at an internal nodev, we shoot a ray from p through q: if the ray does notinterset �v then q =2 bd(B\v ) else we obtain a point q0on �v (see Fig. 2). We perform a point loation queryfor q0, whih takes O(logn) time [3℄. If q0 does not fallwithin a bounded fae of �v, then the searh at thisnode is done, and we traverse the left sub-tree. If q0is ontained within some bounded fae of �v, we hekwhether q is inside the orresponding ball. If not, we

traverse the left sub-tree, otherwise we traverse the rightsub-tree. The overall query time along the root-to-leafpath is thus O(log2 n). 2Sine the data struture for p an be disarded afterfpq is found for eah q 2 S n fpg, we obtain:Theorem 5 Given a set S of n points in R3, the MSSTof S an be found in O(n2 log2 n) time with O(n2) spae.3 ConlusionIn this paper we presented an algorithm for solving theMSST problem in R3 in O(n2 log2 n) time using O(n2)spae, almost mathing the best known results for theplanar ase and improving the previously known resultsfor R3. To ahieve this, we proved an interesting resultrelated to the omplexity of the ommon intersetionof n balls in R3, of possible di�erent radii, that are alltangent to a given point p.Referenes[1℄ G. Barequet, D. Z. Chen, O. Daesu, M. T.Goodrih, and J. Snoeyink. EÆiently approximat-ing polygonal paths in three and higher dimensions.Algorithmia, 33(2):150{167, 2002.[2℄ T.M. Chan. Semi-online maintenane of geomet-ri optima and measures. SIAM J. on Computing,32(3):700{716, 2003.[3℄ H. Edelsbrunner, L. J. Gubas, and J. Stol�. Optimalpoint loation in a monotone subdivision. SIAM J.of Computing, 15(2):317{340, 1986.[4℄ J. Gudmundsson, H. Haverkort, S.-M. Park, C.-S.Shin, and A. Wol�. Faility loation and the ge-ometri minimum-diameter spanning tree. LetureNotes in Computer Siene, 2462:146{160, 2002.[5℄ A. Hepes. Beweis einer Vermutung von A. Vazsonyi.Ata Math. Aad. Si. Hungar., 7:463{466, 1956.[6℄ J.-M. Ho, D.T. Lee, C.-H. Chang, and C.K. Wong.Minimumdiameter spanning trees and related prob-lems. SIAM J. on Computing, 20(5):987{997, 1991.[7℄ E. A. Ramos. Intersetion of unit-balls and diameterof a point set in R3. Comput. Geom., 8:57{65, 1997.


