CCCG 2007, Ottawa, Ontario, August 20-22, 2007

Minimum-sum dipolar spanning tree for points in R’

Steven Bitner*

Abstract

We discuss the problem of finding the minimum-sum
dipolar spanning tree (MSST) in three dimensions. The
MSST problem is a minimization problem wherein given
a set S of n points the goal is to find two points z,y € S
that minimize the sum |zy| +max{r;, ry}, where r, and
ry are the radii of two disks with centers at z and y,
respectively, that together cover all points in S. We
present an O(n?log? n) time algorithm that uses O(n?)
space, improving upon the known three dimensional re-

sult of O(n?%¢) time and O(n?) space.

1 Introduction

For a set .S of n points, the geometric minimum diameter
spanning tree (MDST) is defined as a spanning tree of S
that minimizes the Euclidean length of the longest path
in the tree. In [6], it has been proven that there always
exists a monopolar or a dipolar MDST, i.e., a MDST
with only one or two nodes of degree greater than one.
A monopolar MDST can be found in O(n logn) time [6].
For the dipolar MDST the goal is to find two points
z,y € S that minimize the sum r, + |zy| + ry, where
|zy| is the Euclidean distance between the points & and
y, and r; and r, are the radii of two disks with centers
at ¢ and y, respectively, that together cover all points
in S. The best known result is based on semi-dynamic
data structures and achieves O*(n37¢?) time [2], where
the O*-notation hides an o(n) term, for any constant
e > 0,and ¢g = 1/((d+ 1)(|d/2] + 1)) is a constant
that depends on the dimension d of the point set. For

*Department of Computer Science, University of Texas at Dal-
las, stevenbitner@student.utdallas.edu

tDepartment of Computer Science, University of Texas at Dal-
las, daescu@utdallas.edu Daescu’s research was partially sup-
ported by NSF grant CCF-0635013.

Ovidiu Daescul

example, co = 1/6 and ¢3 = 1/12.

In [4] they introduce a related (facility location) prob-
lem, the minimum-sum dipolar spanning tree (MSST)
problem, in which the goal is to find two points z,y € S
that minimize the sum |ey|+max{r,, 7y }. They present
exact results when S is a set of n points in R% for
d € {2,3,4}. For the planar case, their algorithm
takes O(n?logn) time using O(n?) space. For dimen-
sions d = {3, 4}, they suggest a solution based on range
searching that takes O(n?5%¢) time using O(n?) space,

for any constant € > 0.

Results. In this paper we consider finding a MSST in
3, and present an algorithm that takes O(n?log? n)
time using O(n?) space, thus almost matching the best
known results for the planar case. To achieve this, we
prove an interesting result related to the complexity of
the common intersection of n balls in R3, of possible

different radii, that are all tangent to a given point p.

Definitions and terminology. For two points a and b,
|ab| denotes the Euclidean distance from a to b. We use
Y(a, b) to denote the ball centered at @ and having b on
its bounding sphere, that is, the radius of the bounding
sphere of X(a, b) has length |ab].

Let p, ¢ be two points in S, and let II be the plane
that is the perpendicular bisector of the line segment
pq. We use hp, to denote the open half-space bounded
by II and containing p. Similarly, hy, denotes the open
half-space bounded by Il and containing ¢.

Given p,q € S, the g-farthest point f,, is defined as
the farthest point from p that is contained in the open
halfspace h,q (see Fig. 1). A critical step in our solution

is finding fpq for a fixed p and all ¢ € S\ {p} efficiently.

19th Canadian Conference on Computational Geometry, 2007

i n

Figure 1: p, ¢, and the g-farthest point f,.

2 Finding the MSST in R3

In this section we present our solution for finding the
MSST in R3. To this end, we extend to R® a lemma
from [4] (Lemma 1 below), prove a key property on
the complexity of the common intersection of balls all
tangent to a point p, and give an algorithm to compute
the MSST within the claimed time and space bounds.
Lemma 1 The point © € S s the q-farthest point from
p iff « is the farthest point from p satisfying q ¢ X(x,p).
Proof. = Since z is the g-farthest point from p, by
definition, it is contained in the open half-space hy, and
no other point of S in hyq is farther from p than z. Note
that all points of S M hy, must have a smaller distance
to ¢ than to p since the halfspace hgy, is defined by the
orthogonal bisecting plane of pg (see Fig. 1). Then, ¢ €
X(x,p) would imply |z¢| < |zp|, which means & € hgp,
a contradiction. Thus, ¢ ¢ X(z,p).

< Since ¢ ¢ X(x,p), we have |zp| < |zgq|. The half
spaces hp, and hgp are defined by the perpendicular
bisecting plane of pg, so all points y € S with |yp| < |yq|
are contained in hpq. (A similar argument can be made
for those points in hgp.) Thus, # is the farthest point
from p among those in S N h,,, which is precisely the
definition for the ¢-farthest point. a

Then, the approach presented in [4] for the planar
case can be extended to R3. Specifically, for a fixed
point p € S, we can label all points ¢ € S\ {p} with the
g-farthest point f,, as follows. First, sort S in order of
non-increasing distance from p. Second, set f,, for all
points in S to be NULL. Third, pass through the sorted

array and for each point ¢;, in order, set f,, to ¢; for all

points ¢ € S that are not contained by the ball X(g;, p)
and for which f,, is set to NULL. That is, all points
of S that are in ﬂz;llE(qk,p) but not in X(¢;,p), are
labeled with ¢;, where 1 = 1,2,... ., n— 1.

After the sorting above, the last value in the sorted
array of points in S\ p is the point which has minimum
Euclidean distance from p. Therefore D(¢,,p) = D(p, p)
= 0. This implies that f,, is set for all points in S\ p.
The sorted ordering also ensures that at any step in the
algorithm, f,4 for any point ¢; is the point correspond-
ing to the smallest index j for which ¢; € ﬂi;iE(qk,p)
and ¢; ¢ X(g;,p). This implies that the generic algo-
rithm for finding the g-farthest point for a fixed point p
and all ¢ € S described in [4] for the planar case can also
be applied in R3. We present this algorithm below and
then show how to perform the computations associated
with it efficiently in R3, so that by applying it for each

p € S we achieve the claimed time and space bounds.

Algorithm description. Without loss of generality,
assume that n = 2% for some integer k. Build a complete
binary tree T" with k levels as follows. The leaves of T'
are associated with the balls X(¢;,p), i =1,2,...,n,in
order. That is, the leftmost leaf of T' stores ¥(q1, p) and
the rightmost leaf of T' stores X(q,,p). Each internal
node v of T stores a data structure associated with the
common intersection of the balls that are leaf descen-
dants of the subtree of 7" rooted at v. Given a point g,
to find the smallest index j for which ¢ € ﬂi;iE(qk,p)
and ¢ ¢ X(g;, p) start at the root of T and follow a path
to a leaf of T, at each node v along the path performing
the following test: if ¢ is in the common intersection
stored at the left child of v then go to the right child of
v, else go to the left child of v. Clearly, the index asso-
ciated with the leaf where this search ends corresponds

to the sought j.

While the common intersection of n balls all having
the same radius has complexity O(n) [5], in our case the

radil are not equal, and it is known that if the radii are

CCCG 2007, Ottawa, Ontario, August 20-22, 2007

not equal the common intersection can have complexity
Q(n?). Thus, it is easy to check that a direct application
of the algorithm above, with no other properties (like
equal radii) in place, for each p € S, would result in a
solution for the MSST that takes cubic time and uses
quadratic space, which 1s no better than brute force.
The astute reader may have noticed that answering
whether a point ¢ is inside the common intersection of
a set of balls in R? may not require the actual computa-
tion of the common intersection of the balls. In fact,
a ray shooting based approach to answer this query
has been presented in [1], for solving a related prob-
lem termed off-line ball inclusion testing. They use a
standard geometric mapping, that lifts the point ¢ to a
paraboloid in dimension d + 1 and maps the balls into
(d 4+ 1)-dimensional hyperplanes. The intersections of
the hyperplanes with the paraboloid, projected back to
dimension d, are the original balls. With this lifting, an-
swering whether a point ¢ is inside the common intersec-
tion of n balls in IR? is equivalent to answering whether
a point in dimension d + 1 is below the lower envelope
of a set of n (d + 1)-dimensional hyperplanes. They [1]
showed that using a static data structure for ray shoot-
ing queries, that allows for trade-offs between the pre-
processing time and the query time, answering the latter
question for a set of n query points can be done in time
and space O(n?~2/(L4/2]+1) log@™) n). Since we have to
do this once for each p € S, the overall time to find the
MSST is O(n3=2/(L4/2]+1) log@™) n). Each ray shooting
data structure can be discarded after serving its pur-
pose, so the overall space requirement remains O(n?).

Thus, for any constant dimension d, we have:

Lemma 2 Given a set S of n points in RY d >
2 a constant, the MSST of S can be found n
O(n3_2/(Ld/2J+1)logO(1) n) time and O(n?) space.

For d = 3 or 4, this gives an algorithm for the MSST
with running time O(n"/3 log@™) n), which is better

than the O(n?°+€) time algorithm in [4].

Surprisingly however, a faster solution can be ob-
tained in R3 by actually computing the common inter-
section of the balls stored at internal nodes of 7. For

this, we need the following property.

Lemma 3 Consider the common wntersection of a set
B of n balls in B3, all tangent to a point p. Then each
ball can contribute at most one connected component to

the boundary of the common intersection.

Proof. Let a, b be two points on the boundary of the
common intersection bd(B") of the balls in B, both on
the same bounding sphere s of some ball in B. The
plane defined by a, b, and p intersects s in a circle c.
Then the geodesic connecting @ and b along ¢ on s (an
arc ab of ¢) must be in bd(B"); otherwise, if another
ball contains a and & but not some other point on pg,
then the bounding sphere s’ of that ball defines a circle
¢ in the plane of a, b, and p that has radius greater than
that of ¢ and contains p, a contradiction to the fact that
s’ is tangent to p. Thus, bd(B") N s has at most one
connected component. O

Assuming general position (that is, no more than
three bounding spheres intersect in a point excluding
p) Lemma 3 implies the complexity of bd(B") is O(n).
Lemma 4 Given a set S of n points in R3 and n balls
Y1, %0, ..., 8,, dl tangent to a point p, there exists a
data structure such that for each point q € S, the small-
est index 1 such that ¥; does not contain q can be found
in O(log”n) time. This data structure uses O(nlogn)

space and requires O(nlog2 n) preprocessing time.

Proof. The data structure is the complete binary tree
T described earlier enhanced with point location capa-
bility at each internal node. The intersection of the
balls associated with the internal nodes is computed in
a bottom-up fashion, using the algorithm in [7]. Al-
though that algorithm was designed for equal radius
balls, we note that the only place in that algorithm
where equal radii plays a role 1s in obtaining the prop-

erty that each ball contributes only one connected com-

19th Canadian Conference on Computational Geometry, 2007

Figure 2: Illustrating the process of determining if a
query point ¢ is contained in bd(BY').

ponent to bd(B"). The algorithm computes the com-
mon intersection at each internal node by merging the
intersections stored at its children and takes O(n log” n)
time over T'. Let II" be the plane through p and tangent
to bd(B™). At each internal node v, we unfold the com-
mon intersection by projecting it from p to a plane II
that is parallel to IT" and such that bd(B") is sandwiched
by IT and II’ (see Fig. 2). This unfolding can be done in
time linear in the complexity of the intersection stored
at v. We will refer to the resulting planar subdivision as
=Z,. Finally, we preprocess =, for planar point location
queries [3]. The overall construction time and space for
T is dominated by the computation of the common in-
tersection of balls. Thus, the data structure can be built
in O(nlog”n) time and uses O(nlogn) space.

As explained earlier, a query with a point ¢ follows a
path from the root to a leaf of T, where the leaf gives
the sought index. To decide whether ¢ is inside the
common intersection bd(B]') stored at an internal node
v, we shoot a ray from p through ¢: if the ray does not
intersect =, then ¢ ¢ bd(BY') else we obtain a point ¢/
on =, (see Fig. 2). We perform a point location query
for ¢', which takes O(logn) time [3]. If ¢’ does not fall
within a bounded face of =,, then the search at this
node is done, and we traverse the left sub-tree. If ¢’
is contained within some bounded face of =Z,, we check

whether ¢ is inside the corresponding ball. If not, we

traverse the left sub-tree, otherwise we traverse the right
sub-tree. The overall query time along the root-to-leaf
path is thus O(log” n). O

Since the data structure for p can be discarded after

fpq 1s found for each ¢ € S\ {p}, we obtain:

Theorem 5 Given a set S of n points in R3, the MSST
of S can be found in O(n? log” n) time with O(n?) space.

3 Conclusion

In this paper we presented an algorithm for solving the
MSST problem in 3 in O(n?log” n) time using O(n?)
space, almost matching the best known results for the
planar case and improving the previously known results
for R3. To achieve this, we proved an interesting result
related to the complexity of the common intersection
of n balls in B3, of possible different radii, that are all

tangent to a given point p.

References

[1] G. Barequet, D. Z. Chen, O. Daescu, M. T.
Goodrich, and J. Snoeyink. Efficiently approximat-
ing polygonal paths in three and higher dimensions.

Algorithmica, 33(2):150-167, 2002.

[2] T.M. Chan. Semi-online maintenance of geomet-
ric optima and measures. SIAM J. on Computing,

32(3):700-716, 2003.
[3] H. Edelsbrunner, L. J. Gubas, and J. Stolfi. Optimal

point location in a monotone subdivision. STAM J.

of Computing, 15(2):317-340, 1986.

[4] J. Gudmundsson, H. Haverkort, S.-M. Park, C.-S.
Shin, and A. Wolff. Facility location and the ge-
ometric minimum-diameter spanning tree. Lecture
Notes in Computer Science, 2462:146-160, 2002.

[6] A. Hepes. Beweis einer Vermutung von A. Vazsonyi.

Acta Math. Acad. Sei. Hungar., 7:463-466, 1956.
[6] J.-M. Ho, D.T. Lee, C.-H. Chang, and C.K. Wong.

Minimum diameter spanning trees and related prob-

lems. SIAM J. on Computing, 20(5):987-997, 1991.

[7] E. A. Ramos. Intersection of unit-balls and diameter
of a point set in R3. Comput. Geom., 8:57-65, 1997.

