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uyAbstra
tWe dis
uss the problem of �nding the minimum-sumdipolar spanning tree (MSST) in three dimensions. TheMSST problem is a minimization problemwherein givena set S of n points the goal is to �nd two points x; y 2 Sthat minimize the sum jxyj+maxfrx; ryg, where rx andry are the radii of two disks with 
enters at x and y,respe
tively, that together 
over all points in S. Wepresent an O(n2 log2 n) time algorithm that uses O(n2)spa
e, improving upon the known three dimensional re-sult of O(n2:5+�) time and O(n2) spa
e.1 Introdu
tionFor a set S of n points, the geometri
 minimumdiameterspanning tree (MDST) is de�ned as a spanning tree of Sthat minimizes the Eu
lidean length of the longest pathin the tree. In [6℄, it has been proven that there alwaysexists a monopolar or a dipolar MDST, i.e., a MDSTwith only one or two nodes of degree greater than one.A monopolarMDST 
an be found in O(n logn) time [6℄.For the dipolar MDST the goal is to �nd two pointsx; y 2 S that minimize the sum rx + jxyj + ry, wherejxyj is the Eu
lidean distan
e between the points x andy, and rx and ry are the radii of two disks with 
entersat x and y, respe
tively, that together 
over all pointsin S. The best known result is based on semi-dynami
data stru
tures and a
hieves O�(n3�
d) time [2℄, wherethe O�-notation hides an o(n�) term, for any 
onstant� > 0, and 
d = 1=((d + 1)(bd=2
 + 1)) is a 
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example, 
2 = 1=6 and 
3 = 1=12.In [4℄ they introdu
e a related (fa
ility lo
ation) prob-lem, the minimum-sum dipolar spanning tree (MSST)problem, in whi
h the goal is to �nd two points x; y 2 Sthat minimize the sum jxyj+maxfrx; ryg. They presentexa
t results when S is a set of n points in Rd, ford 2 f2; 3; 4g. For the planar 
ase, their algorithmtakes O(n2 logn) time using O(n2) spa
e. For dimen-sions d = f3; 4g, they suggest a solution based on rangesear
hing that takes O(n2:5+�) time using O(n2) spa
e,for any 
onstant � > 0.Results. In this paper we 
onsider �nding a MSST inR3, and present an algorithm that takes O(n2 log2 n)time using O(n2) spa
e, thus almost mat
hing the bestknown results for the planar 
ase. To a
hieve this, weprove an interesting result related to the 
omplexity ofthe 
ommon interse
tion of n balls in R3, of possibledi�erent radii, that are all tangent to a given point p.De�nitions and terminology. For two points a and b,jabj denotes the Eu
lidean distan
e from a to b. We use�(a; b) to denote the ball 
entered at a and having b onits bounding sphere, that is, the radius of the boundingsphere of �(a; b) has length jabj.Let p, q be two points in S, and let � be the planethat is the perpendi
ular bise
tor of the line segmentpq. We use hpq to denote the open half-spa
e boundedby � and 
ontaining p. Similarly, hqp denotes the openhalf-spa
e bounded by � and 
ontaining q.Given p; q 2 S, the q-farthest point fpq is de�ned asthe farthest point from p that is 
ontained in the openhalfspa
e hpq (see Fig. 1). A 
riti
al step in our solutionis �nding fpq for a �xed p and all q 2 S n fpg eÆ
iently.
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qpFigure 1: p, q, and the q-farthest point fpq.2 Finding the MSST in R3In this se
tion we present our solution for �nding theMSST in R3. To this end, we extend to R3 a lemmafrom [4℄ (Lemma 1 below), prove a key property onthe 
omplexity of the 
ommon interse
tion of balls alltangent to a point p, and give an algorithm to 
omputethe MSST within the 
laimed time and spa
e bounds.Lemma 1 The point x 2 S is the q-farthest point fromp i� x is the farthest point from p satisfying q =2 �(x; p).Proof. ) Sin
e x is the q-farthest point from p, byde�nition, it is 
ontained in the open half-spa
e hpq andno other point of S in hpq is farther from p than x. Notethat all points of S \ hqp must have a smaller distan
eto q than to p sin
e the halfspa
e hqp is de�ned by theorthogonal bise
ting plane of pq (see Fig. 1). Then, q 2�(x; p) would imply jxqj < jxpj, whi
h means x 2 hqp,a 
ontradi
tion. Thus, q =2 �(x; p).( Sin
e q =2 �(x; p), we have jxpj < jxqj. The halfspa
es hpq and hqp are de�ned by the perpendi
ularbise
ting plane of pq, so all points y 2 S with jypj < jyqjare 
ontained in hpq . (A similar argument 
an be madefor those points in hqp.) Thus, x is the farthest pointfrom p among those in S \ hpq, whi
h is pre
isely thede�nition for the q-farthest point. 2Then, the approa
h presented in [4℄ for the planar
ase 
an be extended to R3. Spe
i�
ally, for a �xedpoint p 2 S, we 
an label all points q 2 S nfpg with theq-farthest point fpq as follows. First, sort S in order ofnon-in
reasing distan
e from p. Se
ond, set fpq for allpoints in S to be NULL. Third, pass through the sortedarray and for ea
h point qi, in order, set fpq to qi for all

points q 2 S that are not 
ontained by the ball �(qi; p)and for whi
h fpq is set to NULL. That is, all pointsof S that are in \i�1k=1�(qk; p) but not in �(qi; p), arelabeled with qi, where i = 1; 2; : : : ; n� 1.After the sorting above, the last value in the sortedarray of points in S n p is the point whi
h has minimumEu
lidean distan
e from p. Therefore D(qn; p)�D(p; p)= 0. This implies that fpq is set for all points in S n p.The sorted ordering also ensures that at any step in thealgorithm, fpq for any point qi is the point 
orrespond-ing to the smallest index j for whi
h qi 2 \j�1k=1�(qk; p)and qi =2 �(qj; p). This implies that the generi
 algo-rithm for �nding the q-farthest point for a �xed point pand all q 2 S des
ribed in [4℄ for the planar 
ase 
an alsobe applied in R3. We present this algorithm below andthen show how to perform the 
omputations asso
iatedwith it eÆ
iently in R3, so that by applying it for ea
hp 2 S we a
hieve the 
laimed time and spa
e bounds.Algorithm des
ription. Without loss of generality,assume that n = 2k for some integer k. Build a 
ompletebinary tree T with k levels as follows. The leaves of Tare asso
iated with the balls �(qi; p), i = 1; 2; : : : ; n, inorder. That is, the leftmost leaf of T stores �(q1; p) andthe rightmost leaf of T stores �(qn; p). Ea
h internalnode v of T stores a data stru
ture asso
iated with the
ommon interse
tion of the balls that are leaf des
en-dants of the subtree of T rooted at v. Given a point q,to �nd the smallest index j for whi
h q 2 \j�1k=1�(qk; p)and q =2 �(qj; p) start at the root of T and follow a pathto a leaf of T , at ea
h node v along the path performingthe following test: if q is in the 
ommon interse
tionstored at the left 
hild of v then go to the right 
hild ofv, else go to the left 
hild of v. Clearly, the index asso-
iated with the leaf where this sear
h ends 
orrespondsto the sought j.While the 
ommon interse
tion of n balls all havingthe same radius has 
omplexityO(n) [5℄, in our 
ase theradii are not equal, and it is known that if the radii are
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ommon interse
tion 
an have 
omplexity
(n2). Thus, it is easy to 
he
k that a dire
t appli
ationof the algorithm above, with no other properties (likeequal radii) in pla
e, for ea
h p 2 S, would result in asolution for the MSST that takes 
ubi
 time and usesquadrati
 spa
e, whi
h is no better than brute for
e.The astute reader may have noti
ed that answeringwhether a point q is inside the 
ommon interse
tion ofa set of balls in Rd may not require the a
tual 
omputa-tion of the 
ommon interse
tion of the balls. In fa
t,a ray shooting based approa
h to answer this queryhas been presented in [1℄, for solving a related prob-lem termed o�-line ball in
lusion testing. They use astandard geometri
 mapping, that lifts the point q to aparaboloid in dimension d + 1 and maps the balls into(d + 1)-dimensional hyperplanes. The interse
tions ofthe hyperplanes with the paraboloid, proje
ted ba
k todimension d, are the original balls. With this lifting, an-swering whether a point q is inside the 
ommon interse
-tion of n balls in Rd is equivalent to answering whethera point in dimension d+ 1 is below the lower envelopeof a set of n (d + 1)-dimensional hyperplanes. They [1℄showed that using a stati
 data stru
ture for ray shoot-ing queries, that allows for trade-o�s between the pre-pro
essing time and the query time, answering the latterquestion for a set of n query points 
an be done in timeand spa
e O(n2�2=(bd=2
+1) logO(1) n). Sin
e we have todo this on
e for ea
h p 2 S, the overall time to �nd theMSST is O(n3�2=(bd=2
+1) logO(1) n). Ea
h ray shootingdata stru
ture 
an be dis
arded after serving its pur-pose, so the overall spa
e requirement remains O(n2).Thus, for any 
onstant dimension d, we have:Lemma 2 Given a set S of n points in Rd, d �2 a 
onstant, the MSST of S 
an be found inO(n3�2=(bd=2
+1) logO(1) n) time and O(n2) spa
e.For d = 3 or 4, this gives an algorithm for the MSSTwith running time O(n7=3 logO(1) n), whi
h is betterthan the O(n2:5+�) time algorithm in [4℄.

Surprisingly however, a faster solution 
an be ob-tained in R3 by a
tually 
omputing the 
ommon inter-se
tion of the balls stored at internal nodes of T . Forthis, we need the following property.Lemma 3 Consider the 
ommon interse
tion of a setB of n balls in R3, all tangent to a point p. Then ea
hball 
an 
ontribute at most one 
onne
ted 
omponent tothe boundary of the 
ommon interse
tion.Proof. Let a, b be two points on the boundary of the
ommon interse
tion bd(B\) of the balls in B, both onthe same bounding sphere s of some ball in B. Theplane de�ned by a, b, and p interse
ts s in a 
ir
le 
.Then the geodesi
 
onne
ting a and b along 
 on s (anar
 bab of 
) must be in bd(B\); otherwise, if anotherball 
ontains a and b but not some other point on bpq,then the bounding sphere s0 of that ball de�nes a 
ir
le
0 in the plane of a, b, and p that has radius greater thanthat of 
 and 
ontains p, a 
ontradi
tion to the fa
t thats0 is tangent to p. Thus, bd(B\) \ s has at most one
onne
ted 
omponent. 2Assuming general position (that is, no more thanthree bounding spheres interse
t in a point ex
ludingp) Lemma 3 implies the 
omplexity of bd(B\) is O(n).Lemma 4 Given a set S of n points in R3 and n balls�1;�2; : : : ;�n, all tangent to a point p, there exists adata stru
ture su
h that for ea
h point q 2 S, the small-est index i su
h that �i does not 
ontain q 
an be foundin O(log2 n) time. This data stru
ture uses O(nlogn)spa
e and requires O(n log2 n) prepro
essing time.Proof. The data stru
ture is the 
omplete binary treeT des
ribed earlier enhan
ed with point lo
ation 
apa-bility at ea
h internal node. The interse
tion of theballs asso
iated with the internal nodes is 
omputed ina bottom-up fashion, using the algorithm in [7℄. Al-though that algorithm was designed for equal radiusballs, we note that the only pla
e in that algorithmwhere equal radii plays a role is in obtaining the prop-erty that ea
h ball 
ontributes only one 
onne
ted 
om-
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Figure 2: Illustrating the pro
ess of determining if aquery point q is 
ontained in bd(B\v ).ponent to bd(B\). The algorithm 
omputes the 
om-mon interse
tion at ea
h internal node by merging theinterse
tions stored at its 
hildren and takes O(n log2 n)time over T . Let �0 be the plane through p and tangentto bd(B\). At ea
h internal node v, we unfold the 
om-mon interse
tion by proje
ting it from p to a plane �that is parallel to �0 and su
h that bd(B\) is sandwi
hedby � and �0 (see Fig. 2). This unfolding 
an be done intime linear in the 
omplexity of the interse
tion storedat v. We will refer to the resulting planar subdivision as�v. Finally, we prepro
ess �v for planar point lo
ationqueries [3℄. The overall 
onstru
tion time and spa
e forT is dominated by the 
omputation of the 
ommon in-terse
tion of balls. Thus, the data stru
ture 
an be builtin O(n log2 n) time and uses O(n logn) spa
e.As explained earlier, a query with a point q follows apath from the root to a leaf of T , where the leaf givesthe sought index. To de
ide whether q is inside the
ommon interse
tion bd(B\v ) stored at an internal nodev, we shoot a ray from p through q: if the ray does notinterse
t �v then q =2 bd(B\v ) else we obtain a point q0on �v (see Fig. 2). We perform a point lo
ation queryfor q0, whi
h takes O(logn) time [3℄. If q0 does not fallwithin a bounded fa
e of �v, then the sear
h at thisnode is done, and we traverse the left sub-tree. If q0is 
ontained within some bounded fa
e of �v, we 
he
kwhether q is inside the 
orresponding ball. If not, we

traverse the left sub-tree, otherwise we traverse the rightsub-tree. The overall query time along the root-to-leafpath is thus O(log2 n). 2Sin
e the data stru
ture for p 
an be dis
arded afterfpq is found for ea
h q 2 S n fpg, we obtain:Theorem 5 Given a set S of n points in R3, the MSSTof S 
an be found in O(n2 log2 n) time with O(n2) spa
e.3 Con
lusionIn this paper we presented an algorithm for solving theMSST problem in R3 in O(n2 log2 n) time using O(n2)spa
e, almost mat
hing the best known results for theplanar 
ase and improving the previously known resultsfor R3. To a
hieve this, we proved an interesting resultrelated to the 
omplexity of the 
ommon interse
tionof n balls in R3, of possible di�erent radii, that are alltangent to a given point p.Referen
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