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Conflict-Free Coloring of Points on a Line with respect to a Set of Intervals

Matthew J. Katz*

Abstract

We present a 2-approximation algorithm for CF-
coloring of points on a line with respect to a given
set of intervals. The running time of the algorithm is
O(nlogn).

1 Introduction

The model of Conflict-Free Coloring (CF-Coloring) was
introduced in [6] and further studied in [1, 7, 8]. This
model arises from frequency assignment problems in cel-
lular networks. In such networks each base station is
assigned a certain frequency and transmits data in this
frequency within some given region. Clients can con-
nect to each other only via base stations and are able
to scan frequencies in search for a base station that is
received well. The quality of the reception depends on
the noise caused by signals transmitted by other base
stations that reach the client. In this context, a base
station is received well if all other base stations that
reach the client are assigned other frequencies and thus
cannot interfere.

In the original CF-coloring model, the network is re-
quired to serve clients at any location that is reached
by some base station. Thus, one must assign frequen-
cies to the base stations, such that every point in each
transmission region is supplied. The problem objective
is to minimize the number of frequencies assigned.

Note that the CF-coloring problem is essentially dif-
ferent from the regular vertex coloring problem in the
corresponding geometric intersection graph, as the lat-
ter completely forbids using the same color for intersect-
ing regions. However, the NP-completeness proof of [5]
for minimum coloring of unit disks, can be adapted to
the case of CF-coloring of unit disks (that is, where each
transmission region is a unit disk). Since this proof uses
a reduction from coloring planar graphs, it also follows
that CF-coloring of unit disks is hard to approximate
within ratio 4/3 — ¢, for any € > 0.

Algorithms that use O(logn) colors (where n is the
number of regions) are given in [6] for CF-coloring of
disks, axis-parallel rectangles, regular hexagons, and
general congruent centrally symmetric convex regions in
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the plane. It is shown there that for a certain arrange-
ment of the regions, called a “chain”, Q(logn) colors
are needed in order to supply all the points within the
coverage area.

A dual model, in which points are colored with
respect to regions was also defined in [6] and fur-
ther studied in [8]. In this paper we consider a spe-
cial one dimensional version of this problem. We are
given a set of intervals on the real line, where the left
and right endpoints of each interval belong to the set
{1,2,...,n}. One must assign a color to each of the
points {1,2,...,n}, such that all the given intervals are
supplied. That is, for each interval there exists a point,
among the points lying in the interval, whose color is
unique. This problem is equivalent to the problem of
CF-coloring a chain of unit disks, where it is neces-
sary to supply only a given subset of the cells of the
arrangement of the disks. This idea is actually a nat-
ural extension of the original CF-coloring model, since
in many applications good reception is needed only in
some locations.

Recently, online versions of CF-coloring of points with
respect to intervals have been introduced [2, 3]. In these
versions one must assign colors to points that arrive
online, in order to supply all the intervals. Note that
our model is different since only a given subset of the
intervals must be supplied.

In Section 3 we consider two special cases of CF-
coloring and present algorithms for these cases, achiev-
ing CF-coloring with only two (non-zero) colors. In
Section 4 we present a 2-approximation algorithm for
CF-coloring of points with respect to a given set of in-
tervals. Note that it is still not clear whether this prob-
lem is polynomial or not. In Section 5, we analyze the
complexity of the algorithms presented in this paper.

2 Preliminaries

Let P = {p1,p2,...,Dm} be a set of points on the line,
and let R = {I1, I, ..., I,} be a set of intervals. A CF-
coloring of P with respect to R is a function x : P — N,
such that for each I € R, at least one of the points of P
that lie in I has a unique color; we say that such a point
p supports I and also that its color x(p) supports I. In
this paper we use 0 as a null color, that cannot support
any interval. A point whose color is 0 is considered
colorless. This is also the default color, so that the
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color of a point whose color was not fixed explicitly is
considered to be 0.

By the definition of CF-coloring, we must require that
for each interval I € R there is a point of P that lies in
1. Also, a point of P that does not lie in any interval of
R is irrelevant, and can be colored 0. Thus, we assume
that each interval of R covers at least one point of P,
and each point of P lies in at least one interval of R.

For each I € R, we denote by {(I) and r(I) the left
and right endpoints of I, respectively. We denote by 7
(resp. 7) the subset of intervals whose left (resp. right)
endpoint is in I (including [ itself). That is 7= {I’ :
I(I'ye I} and 1={I':r(I") € I}.

Let I € R and let p;,p. € P be the leftmost and
rightmost points of P that lie in I. The interval [p;, p]
is obtained from I by removing from both its ends pieces
that are empty of points of P. Obviously, for each point
p € P it holds that p € I if and only if p € [p, p|, and
hence we may assume that all intervals I € R have their
endpoints in P.

Finally, for a subset R’ of intervals, we denote by
Range(R') the range defined by the intervals of R’; that
is Range(R') = [minyer/{I(I)}, maxer {r(I)}].

3 Two Special Cases

In this section we consider two special cases of our CF-
coloring problem, in which the set of intervals R satisfies
some additional property. In both cases we obtain a CF-
coloring using only two non-zero colors.

CF-coloring of points w.r.t. a set of non-nested in-
tervals. Let P and R be as above. In addition, as-
sume that there are no two intervals I,Is € R such
that Iy C I. Algorithm NNCFCp (Non-Nested CF-
Coloring of Points) below, outputs a CF-coloring x of
P with respect to R using only two non-zero colors.

Algorithm 1 NNCFCp
IS +— maximum independent set of R
for each I € IS do

x(U(1)) < 1, x(r(1)) « 2
end for

Clearly, each I € IS is supported (twice). Assume
there is an interval I ¢ IS that is not supported. If
neither 1 nor 2 occur in I, then, since I is not contained
in any other interval of R, we have that ISU {I} is
independent, contradicting the fact that IS is maximum
independent. Otherwise, both 1 and 2 occur in I at least
twice each, implying that there exists an interval I’ € IS
such that I’ C I — a contradiction. Thus we conclude
that x is a CF-coloring and obtain the following lemma.

Lemma 1 Let P be a set of points and let R be a set of
intervals. If there are no two intervals I;,I, € R such
that Iy C I, then there exists a CF-coloring of P with
respect to R that uses only two non-zero colors.

CF-coloring of unit intervals w.r.t. a set of points.
Let R be a set of unit intervals, and let P be a set of
points such that P is covered by the intervals of R. Al-
gorithm UICFC1 (Unit Intervals CF-Coloring of Inter-
vals) below outputs a CF-coloring x of R with respect
to P using only two non-zero colors. (In this case the
endpoints of the intervals of R are not necessarily points
of P.)

Algorithm 2 UICFCr1
IS «— maximum independent set of R
A—10
last «— )
for each I € IS by increasing right endpoint do
if 7N last =0 then
add to A the leftmost interval in 7
end if
add to A the rightmost interval in 7
last «— the rightmost interval in 7
end for
color «+— 1
for each I € ISU A by increasing right endpoint do
X(I) « color
color — (color mod 2) 4+ 1
end for

Note that P is covered by the intervals of ISUA. Note
also that each point of P lies in at most two intervals
of A and at most one interval of IS; that is, in at most
three colored intervals. Now let p be any point in P.
The intervals of IS U A that cover p appear one after
the other in the final coloring loop, hence at least one of
them is colored by a unique color. This interval supports
p. Thus we conclude that x is a CF-coloring and obtain
the following lemma.

Lemma 2 Let R be a set of unit intervals and let P
be a set of points, then there exists a CF-coloring of R
with respect to P that uses only two non-zero colors.

Remark. It is not surprising that in the latter case it is
also possible to manage with only two non-zero colors,
since it is almost dual to the former case.

4 CF-Coloring of Points w.r.t. a Set of Intervals

Let P be a set of points and let R be a set of intervals (as
discussed in Section 2). We assume that no two intervals
have a common right endpoint (see remark at the end of
this section). Algorithm CFCp (CF-Coloring of Points)
below, outputs a CF-coloring of P with respect to R.
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Algorithm 3 CFCp
for each I € R by increasing right endpoint do
if I is already supported by some point to the left
of r(I) then
X (r(D) <0
else
X (r(I)) < smallest (non-zero) color that does
not yet appear in 1
end if
end for

Note that the algorithm assigns colors only to points
that are a right endpoint of some interval. We show
below that despite this rather severe restriction, the al-
gorithm computes a 2-approximation.

Observation 1 For each I € R, if x(r(I)) # 0, then
x(r(I)) supports I (i.e. occursin I only once) and there
18 no other color that supports I.

Observation 2 For each I € R, if x(r(I)) # 0, then
all colors smaller than x(r(I)) occur in I at least twice
each.

Notice that if x(r(I)) = 0, then it is possible that I is
supported by several colors. Let p(I) be the maximum
among all colors supporting I.

Lemma 3 Let I € R. Then u(I) is the mazimum
among all colors occurring in I.

Proof. Assume there is a color a > p(I) that occurs
in I. By definition, o does not support I, i.e., it occurs
in I at least twice at r(I1) and at r([2). Assume, e.g.,
that r(I;) < r(I2). By Observation 1, o = p(I3), and
since also a = x(r(I1)), we have that r(I;) ¢ I, thus
I is fully contained in 1.

But, since a > p(I), Observation 2 implies that the
color pu(I) occurs at least twice in I and hence in I,
contradicting the uniqueness of () in I. O

In the next lemma we bound from below the number
of colors used by an optimal coloring algorithm, assum-
ing, e.g., that all points lie in one large interval I and the
rest of the intervals can be partitioned into two subsets
with disjoint ranges.

Lemma 4 Assume R1,Ro C R and I € R, such that
(i) Range(R1) N Range(R2) = 0, and (ii) Range(Ry U
Re) C I. Put R = Ry URyU{I}, and denote
by P1 (resp. P2) the subset of points of P that lie
in Range(Rq1) (resp. Range(Rz)). Finally, let x1
(resp. x2) be an optimal CF-coloring of Py (resp.
Pa) with respect to Ry (resp. Ra), and let x be an
optimal CF-coloring of P with respect to R'. Then
[x| > min{|x1|, |x2|}, where |x| is the number of col-
ors used by x.

Proof. Assume first that |x1]| > |x2|. Clearly, any CF-
coloring of P with respect to R’ requires at least |y1|
colors, thus |x| = [x1] > [xz| = min{[xa], [x2/}.

Assume now that |xi1| = |xz2|- Again, any CF-
coloring of P with respect to R’ requires at least |x1|
colors. Moreover, the coloring x defined below is a CF-
coloring of P with respect to R’ using |x| = |x1| +1 >
min{|x1], |x2|} colors. Let ¢ be any point of P that lies
in I, then x is defined as follows:

Ixil+1 ifp=gq

xi(p) ifpeP
x2(p)  ifpeEP
0 otherwise

x(p) =

We claim that y is optimal. Assume there is a CF-
coloring x’' of P with respect to R’ that uses (beside
maybe 0) only the colors {1,...,|x1|}, and let x} (resp.
X4) be the coloring of Py (resp. Ps) induced by x’. Let
a be the color (in ') of a point supporting I, then at
least one of the colorings x}, x5 does not use the color
a. Assuming, e.g., that x} does not use «, we get that
X} is a CF-coloring of P; with respect to Ry that uses
less than |x1]| colors, contradicting the optimality of x;.

O

At this point, we note that (i) removing from R all
intervals I with x(r(I)) = 0 and re-coloring P with
respect to the remaining intervals (using CFCp again),
results in exactly the same coloring, and (ii) the removal
of intervals from R can only decrease the number of
colors required by an optimal CF-coloring. Therefore,
when determining the approximation ratio of CFCp, we
may assume that all such intervals have been removed.

Lemma 5 For each interval I € R, if x(r(I)) = k
(i.e., if CFCP assigned the color k to r(I)), then any
CF-coloring of P NI with respect to ] uses at least [%]
colors.

Proof. By induction on k. The claim is clearly true for
k < 2. Let k> 2 and assume the claim is true for any
t < k —1. We prove that it is also true for k.

Let I be an interval with x (r(I)) = k. Then by
Observation 2 the color k—1 occurs in I (at least) twice,
at r(I]) and at r(I5). Assume, e.g., that r(I1) < r(I5).
Since r(I3) = k — 1 # 0, we have (by Observation 1)
that k — 1 supports 15, hence r(I]) ¢ I}, implying that
I, is fully contained in I (see Figure 1(a)).

Now, the color k — 2 occurs (at least) twice in I}, at
r(I{) and at r(I}), and assume r(I{') < r(I%). Since
(by Lemma 3) k — 2 is the maximum among all colors
occurring in I, r(I]) cannot lie in I}, implying that
both I} and I} are fully contained in I.

Recall that we are assuming that all intervals have a
non-zero color at their right endpoint. Therefore by ap-
plying Observation 2 and Lemma 3 we obtain that r(1}’)
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Figure 1: (a) Intervals I, I7, I}, I}, and IJ. (b) The
ranges of ;7 and 1 are disjoint and contained in I.

does not lie in any of the intervals of 1 and that r(I7)
does not lie in any of the intervals of f{/. Thus, as Fig-
ure 1(b) illustrates, the set ;i U 1 U{I} satisfies the
conditions of Lemma 4. By the induction hypothesis,
any optimal CF-coloring of the points of PN Range(;/)
with respect to f{/ uses at least (%] colors, and simi-
larly for I)). Thus, by Lemma 4 we obtain that any op-
timal coloring of P with respect to the set ;» U 7 U{I}

uses at least {%] +1= (%W colors. O
We can now state the main theorem.
Theorem 6 CFCP computes a 2-Approzimation.

Proof. Let x be the coloring produced by CFCp, and
put |x| = k. Let I € R be the first interval for which the
color k was used by CFCp. By Lemma 5, any optimal
CF-coloring of the points of P N I with respect to 7
uses at least %—‘ colors. Let OPT be an optimal CF-
coloring of P with respect to R. Obviously OPT uses
at least this number of colors, thus we conclude that
|x| < 2|OPT)|. O

Remark. Our proof does not apply to the version
where intervals may share endpoints. In the full paper
we present a 4-approximation for this version.

5 Complexity

In this section we examine the complexity of the algo-
rithms mentioned above. Both algorithms presented in
Section 3 first find a maximum independent set IS of

R. This can be done in time O(nlogn). Subsequently,
Algorithm NNCFCP only colors the endpoints of the
intervals of IS. Concerning Algorithm UICFCI, it con-
siders the intervals of IS one after the other, and for each
such interval [ it finds the leftmost (resp. rightmost) in-
terval in R with endpoint in I. Since R is a set of unit
intervals, this can all be done in time O(nlogn). Thus
both algorithms of Section 3 run in time O(nlogn).
Algorithm CFCP considers the intervals in R, one by
one, by increasing right endpoint. For each such inter-
val I one must find (based on Lemma 3) the maximal
color a among the colors already in I, and determine
whether « is unique in I. If it is unique, then I’s right
endpoint is colored 0, otherwise, it is colored o 4+ 1. In
order to support such queries one can employ a semi-
dynamic range tree (insertions only) [4], and maintain
some additional information in its nodes. Thus the total
running time of Algorithm CFCPp is also O(nlogn).
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