
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Conflict-Free Coloring of Points on a Line with respect to a Set of Intervals
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Abstract

We present a 2-approximation algorithm for CF-
coloring of points on a line with respect to a given
set of intervals. The running time of the algorithm is
O(n log n).

1 Introduction

The model of Conflict-Free Coloring (CF-Coloring) was
introduced in [6] and further studied in [1, 7, 8]. This
model arises from frequency assignment problems in cel-
lular networks. In such networks each base station is
assigned a certain frequency and transmits data in this
frequency within some given region. Clients can con-
nect to each other only via base stations and are able
to scan frequencies in search for a base station that is
received well. The quality of the reception depends on
the noise caused by signals transmitted by other base
stations that reach the client. In this context, a base
station is received well if all other base stations that
reach the client are assigned other frequencies and thus
cannot interfere.

In the original CF-coloring model, the network is re-
quired to serve clients at any location that is reached
by some base station. Thus, one must assign frequen-
cies to the base stations, such that every point in each
transmission region is supplied. The problem objective
is to minimize the number of frequencies assigned.

Note that the CF-coloring problem is essentially dif-
ferent from the regular vertex coloring problem in the
corresponding geometric intersection graph, as the lat-
ter completely forbids using the same color for intersect-
ing regions. However, the NP-completeness proof of [5]
for minimum coloring of unit disks, can be adapted to
the case of CF-coloring of unit disks (that is, where each
transmission region is a unit disk). Since this proof uses
a reduction from coloring planar graphs, it also follows
that CF-coloring of unit disks is hard to approximate
within ratio 4/3− ǫ, for any ǫ > 0.

Algorithms that use O(log n) colors (where n is the
number of regions) are given in [6] for CF-coloring of
disks, axis-parallel rectangles, regular hexagons, and
general congruent centrally symmetric convex regions in
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the plane. It is shown there that for a certain arrange-
ment of the regions, called a “chain”, Ω(log n) colors
are needed in order to supply all the points within the
coverage area.

A dual model, in which points are colored with
respect to regions was also defined in [6] and fur-
ther studied in [8]. In this paper we consider a spe-
cial one dimensional version of this problem. We are
given a set of intervals on the real line, where the left
and right endpoints of each interval belong to the set
{1, 2, . . . , n}. One must assign a color to each of the
points {1, 2, . . . , n}, such that all the given intervals are
supplied. That is, for each interval there exists a point,
among the points lying in the interval, whose color is
unique. This problem is equivalent to the problem of
CF-coloring a chain of unit disks, where it is neces-
sary to supply only a given subset of the cells of the
arrangement of the disks. This idea is actually a nat-
ural extension of the original CF-coloring model, since
in many applications good reception is needed only in
some locations.

Recently, online versions of CF-coloring of points with
respect to intervals have been introduced [2, 3]. In these
versions one must assign colors to points that arrive
online, in order to supply all the intervals. Note that
our model is different since only a given subset of the
intervals must be supplied.

In Section 3 we consider two special cases of CF-
coloring and present algorithms for these cases, achiev-
ing CF-coloring with only two (non-zero) colors. In
Section 4 we present a 2-approximation algorithm for
CF-coloring of points with respect to a given set of in-
tervals. Note that it is still not clear whether this prob-
lem is polynomial or not. In Section 5, we analyze the
complexity of the algorithms presented in this paper.

2 Preliminaries

Let P = {p1, p2, ..., pm} be a set of points on the line,
and let R = {I1, I2, ..., In} be a set of intervals. A CF-
coloring of P with respect to R is a function χ : P −→ N,
such that for each I ∈ R, at least one of the points of P
that lie in I has a unique color; we say that such a point
p supports I and also that its color χ(p) supports I. In
this paper we use 0 as a null color, that cannot support
any interval. A point whose color is 0 is considered
colorless. This is also the default color, so that the
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color of a point whose color was not fixed explicitly is
considered to be 0.

By the definition of CF-coloring, we must require that
for each interval I ∈ R there is a point of P that lies in
I. Also, a point of P that does not lie in any interval of
R is irrelevant, and can be colored 0. Thus, we assume
that each interval of R covers at least one point of P,
and each point of P lies in at least one interval of R.

For each I ∈ R, we denote by l(I) and r(I) the left
and right endpoints of I, respectively. We denote by ⊢

I

(resp. ⊣

I ) the subset of intervals whose left (resp. right)
endpoint is in I (including I itself). That is ⊢

I= {I
′ :

l(I ′) ∈ I} and ⊣

I= {I
′ : r(I ′) ∈ I}.

Let I ∈ R and let pl, pr ∈ P be the leftmost and
rightmost points of P that lie in I. The interval [pl, pr]
is obtained from I by removing from both its ends pieces
that are empty of points of P. Obviously, for each point
p ∈ P it holds that p ∈ I if and only if p ∈ [pl, pr], and
hence we may assume that all intervals I ∈ R have their
endpoints in P.

Finally, for a subset R′ of intervals, we denote by
Range(R′) the range defined by the intervals ofR′; that
is Range(R′) = [minI∈R′{l(I)},maxI∈R′{r(I)}].

3 Two Special Cases

In this section we consider two special cases of our CF-
coloring problem, in which the set of intervalsR satisfies
some additional property. In both cases we obtain a CF-
coloring using only two non-zero colors.

CF-coloring of points w.r.t. a set of non-nested in-

tervals. Let P and R be as above. In addition, as-
sume that there are no two intervals I1, I2 ∈ R such
that I1 ⊂ I2. Algorithm NNCFCP (Non-Nested CF-
Coloring of Points) below, outputs a CF-coloring χ of
P with respect to R using only two non-zero colors.

Algorithm 1 NNCFCP

IS← maximum independent set of R
for each I ∈ IS do

χ(l(I))← 1, χ(r(I))← 2
end for

Clearly, each I ∈ IS is supported (twice). Assume
there is an interval I 6∈ IS that is not supported. If
neither 1 nor 2 occur in I, then, since I is not contained
in any other interval of R, we have that IS ∪ {I} is
independent, contradicting the fact that IS is maximum
independent. Otherwise, both 1 and 2 occur in I at least
twice each, implying that there exists an interval I ′ ∈ IS
such that I ′ ⊂ I — a contradiction. Thus we conclude
that χ is a CF-coloring and obtain the following lemma.

Lemma 1 Let P be a set of points and let R be a set of
intervals. If there are no two intervals I1, I2 ∈ R such
that I1 ⊂ I2, then there exists a CF-coloring of P with
respect to R that uses only two non-zero colors.

CF-coloring of unit intervals w.r.t. a set of points.

Let R be a set of unit intervals, and let P be a set of
points such that P is covered by the intervals of R. Al-
gorithm UICFCI (Unit Intervals CF-Coloring of Inter-
vals) below outputs a CF-coloring χ of R with respect
to P using only two non-zero colors. (In this case the
endpoints of the intervals ofR are not necessarily points
of P.)

Algorithm 2 UICFCI

IS← maximum independent set of R
A← ∅
last← ∅
for each I ∈ IS by increasing right endpoint do

if I ∩ last = ∅ then

add to A the leftmost interval in ⊣

I

end if

add to A the rightmost interval in ⊢

I

last← the rightmost interval in ⊢

I

end for

color ← 1
for each I ∈ IS∪A by increasing right endpoint do

χ(I)← color
color ← (color mod 2) + 1

end for

Note that P is covered by the intervals of IS∪A. Note
also that each point of P lies in at most two intervals
of A and at most one interval of IS; that is, in at most
three colored intervals. Now let p be any point in P.
The intervals of IS ∪ A that cover p appear one after
the other in the final coloring loop, hence at least one of
them is colored by a unique color. This interval supports
p. Thus we conclude that χ is a CF-coloring and obtain
the following lemma.

Lemma 2 Let R be a set of unit intervals and let P
be a set of points, then there exists a CF-coloring of R
with respect to P that uses only two non-zero colors.

Remark. It is not surprising that in the latter case it is
also possible to manage with only two non-zero colors,
since it is almost dual to the former case.

4 CF-Coloring of Points w.r.t. a Set of Intervals

Let P be a set of points and letR be a set of intervals (as
discussed in Section 2). We assume that no two intervals
have a common right endpoint (see remark at the end of
this section). Algorithm CFCP (CF-Coloring of Points)
below, outputs a CF-coloring of P with respect to R.
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Algorithm 3 CFCP

for each I ∈ R by increasing right endpoint do

if I is already supported by some point to the left
of r(I) then

χ (r(I))← 0
else

χ (r(I)) ← smallest (non-zero) color that does
not yet appear in I

end if

end for

Note that the algorithm assigns colors only to points
that are a right endpoint of some interval. We show
below that despite this rather severe restriction, the al-
gorithm computes a 2-approximation.

Observation 1 For each I ∈ R, if χ(r(I)) 6= 0, then
χ(r(I)) supports I (i.e. occurs in I only once) and there
is no other color that supports I.

Observation 2 For each I ∈ R, if χ(r(I)) 6= 0, then
all colors smaller than χ(r(I)) occur in I at least twice
each.

Notice that if χ(r(I)) = 0, then it is possible that I is
supported by several colors. Let µ(I) be the maximum
among all colors supporting I.

Lemma 3 Let I ∈ R. Then µ(I) is the maximum
among all colors occurring in I.

Proof. Assume there is a color α > µ(I) that occurs
in I. By definition, α does not support I, i.e., it occurs
in I at least twice at r(I1) and at r(I2). Assume, e.g.,
that r(I1) < r(I2). By Observation 1, α = µ(I2), and
since also α = χ(r(I1)), we have that r(I1) 6∈ I2, thus
I2 is fully contained in I.

But, since α > µ(I), Observation 2 implies that the
color µ(I) occurs at least twice in I2 and hence in I,
contradicting the uniqueness of µ(I) in I. �

In the next lemma we bound from below the number
of colors used by an optimal coloring algorithm, assum-
ing, e.g., that all points lie in one large interval I and the
rest of the intervals can be partitioned into two subsets
with disjoint ranges.

Lemma 4 Assume R1,R2 ⊆ R and I ∈ R, such that
(i) Range(R1) ∩Range(R2) = ∅, and (ii) Range(R1 ∪
R2) ⊆ I. Put R′ = R1 ∪ R2 ∪ {I}, and denote
by P1 (resp. P2) the subset of points of P that lie
in Range(R1) (resp. Range(R2)). Finally, let χ1

(resp. χ2) be an optimal CF-coloring of P1 (resp.
P2) with respect to R1 (resp. R2), and let χ be an
optimal CF-coloring of P with respect to R′. Then
|χ| > min{|χ1|, |χ2|}, where |χ| is the number of col-
ors used by χ.

Proof. Assume first that |χ1| > |χ2|. Clearly, any CF-
coloring of P with respect to R′ requires at least |χ1|
colors, thus |χ| ≥ |χ1| > |χ2| = min{|χ1|, |χ2|}.

Assume now that |χ1| = |χ2|. Again, any CF-
coloring of P with respect to R′ requires at least |χ1|
colors. Moreover, the coloring χ defined below is a CF-
coloring of P with respect to R′ using |χ| = |χ1|+ 1 >
min{|χ1|, |χ2|} colors. Let q be any point of P that lies
in I, then χ is defined as follows:

χ(p) =















|χ1|+ 1 if p = q
χ1(p) if p ∈ P1

χ2(p) if p ∈ P2

0 otherwise

We claim that χ is optimal. Assume there is a CF-
coloring χ′ of P with respect to R′ that uses (beside
maybe 0) only the colors {1, . . . , |χ1|}, and let χ′

1
(resp.

χ′
2
) be the coloring of P1 (resp. P2) induced by χ′. Let

α be the color (in χ′) of a point supporting I, then at
least one of the colorings χ′

1
, χ′

2
does not use the color

α. Assuming, e.g., that χ′
1

does not use α, we get that
χ′

1
is a CF-coloring of P1 with respect to R1 that uses

less than |χ1| colors, contradicting the optimality of χ1.
�

At this point, we note that (i) removing from R all
intervals I with χ(r(I)) = 0 and re-coloring P with
respect to the remaining intervals (using CFCP again),
results in exactly the same coloring, and (ii) the removal
of intervals from R can only decrease the number of
colors required by an optimal CF-coloring. Therefore,
when determining the approximation ratio of CFCP, we
may assume that all such intervals have been removed.

Lemma 5 For each interval I ∈ R, if χ (r(I)) = k
(i.e., if CFCP assigned the color k to r(I)), then any
CF-coloring of P ∩ I with respect to ⊣

I uses at least
⌈

k

2

⌉

colors.

Proof. By induction on k. The claim is clearly true for
k ≤ 2. Let k > 2 and assume the claim is true for any
t ≤ k − 1. We prove that it is also true for k.

Let I be an interval with χ (r(I)) = k. Then by
Observation 2 the color k−1 occurs in I (at least) twice,
at r(I ′

1
) and at r(I ′

2
). Assume, e.g., that r(I ′

1
) < r(I ′

2
).

Since r(I ′
2
) = k − 1 6= 0, we have (by Observation 1)

that k − 1 supports I ′
2
, hence r(I ′

1
) 6∈ I ′

2
, implying that

I ′
2

is fully contained in I (see Figure 1(a)).
Now, the color k − 2 occurs (at least) twice in I ′

2
, at

r(I ′′
1
) and at r(I ′′

2
), and assume r(I ′′

1
) < r(I ′′

2
). Since

(by Lemma 3) k − 2 is the maximum among all colors
occurring in I ′′

1
, r(I ′

1
) cannot lie in I ′′

1
, implying that

both I ′′
1

and I ′′
2

are fully contained in I.
Recall that we are assuming that all intervals have a

non-zero color at their right endpoint. Therefore by ap-
plying Observation 2 and Lemma 3 we obtain that r(I ′′

1
)
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Figure 1: (a) Intervals I, I ′
1
, I ′

2
, I ′′

1
, and I ′′

2
. (b) The

ranges of ⊣

I′′

1
and ⊣

I′′

2
are disjoint and contained in I.

does not lie in any of the intervals of ⊣

I′′

2
and that r(I ′

1
)

does not lie in any of the intervals of ⊣

I′′

1
. Thus, as Fig-

ure 1(b) illustrates, the set ⊣

I′′

1
∪ ⊣

I′′

2
∪{I} satisfies the

conditions of Lemma 4. By the induction hypothesis,
any optimal CF-coloring of the points of P ∩Range( ⊣

I′′

1
)

with respect to ⊣

I′′

1
uses at least

⌈

k−2

2

⌉

colors, and simi-
larly for I ′′

2
. Thus, by Lemma 4 we obtain that any op-

timal coloring of P with respect to the set ⊣

I′′

1
∪ ⊣

I′′

2
∪{I}

uses at least
⌈

k−2

2

⌉

+ 1 =
⌈

k

2

⌉

colors. �

We can now state the main theorem.

Theorem 6 CFCP computes a 2-Approximation.

Proof. Let χ be the coloring produced by CFCP, and
put |χ| = k. Let I ∈ R be the first interval for which the
color k was used by CFCP. By Lemma 5, any optimal
CF-coloring of the points of P ∩ I with respect to ⊣

I

uses at least
⌈

k

2

⌉

colors. Let OPT be an optimal CF-
coloring of P with respect to R. Obviously OPT uses
at least this number of colors, thus we conclude that
|χ| ≤ 2|OPT |. �

Remark. Our proof does not apply to the version
where intervals may share endpoints. In the full paper
we present a 4-approximation for this version.

5 Complexity

In this section we examine the complexity of the algo-
rithms mentioned above. Both algorithms presented in
Section 3 first find a maximum independent set IS of

R. This can be done in time O(n log n). Subsequently,
Algorithm NNCFCP only colors the endpoints of the
intervals of IS. Concerning Algorithm UICFCI, it con-
siders the intervals of IS one after the other, and for each
such interval I it finds the leftmost (resp. rightmost) in-
terval in R with endpoint in I. Since R is a set of unit
intervals, this can all be done in time O(n log n). Thus
both algorithms of Section 3 run in time O(n log n).

Algorithm CFCP considers the intervals in R, one by
one, by increasing right endpoint. For each such inter-
val I one must find (based on Lemma 3) the maximal
color α among the colors already in I, and determine
whether α is unique in I. If it is unique, then I’s right
endpoint is colored 0, otherwise, it is colored α + 1. In
order to support such queries one can employ a semi-
dynamic range tree (insertions only) [4], and maintain
some additional information in its nodes. Thus the total
running time of Algorithm CFCP is also O(n log n).
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