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Weak conflict-free colorings of point sets and simple regions

Balázs Keszegh∗

Abstract

In this paper we consider the weak conflict-free color-
ings of regions and points. This is a natural relaxation
of conflict-free coloring [ELRS03]. One of the most in-
teresting type of regions to consider for this problem
is that of the axis-parallel rectangles. We completely
solve the problem for a special case of them, for bot-
tomless rectangles. We also give complete answer for
half-planes and pose several open problems. Moreover
we give efficient algorithms for coloring with the needed
number of colors. For space limitations we do not give
the proofs in this version of the paper, to represent the
proof techniques we give one proof in the Appendix.

1 Preliminaries

Motivated by a frequency assignment problem in
cellular telephone networks, Even, Lotker, Ron and
Smorodinsky [ELRS03] studied the following problem.
Cellular networks facilitate communication between
fixed base stations and moving clients. Fixed frequen-
cies are assigned to base-stations to enable links to
clients. Each client continuously scans frequencies in
search of a base-station within its range with good
reception. The fundamental problem of frequency
assignment in cellular networks is to assign frequencies
to base-stations such that every client is served by some
base-station, i.e. it lies within the range of the station
and no other station within its reception range has the
same frequency. Given a fixed set of base-stations we
want to minimize the number of assigned frequencies.
First we assume that the ranges are determined by the
clients, i.e. if a base-station is in the range of some
client, then they can communicate. Let P be the set
of base-stations and F the set of all possible ranges of
any client. Given some set F of planar regions and a
finite set of points P we define cf(F , P ) as the smallest
number of colors which are enough to color the points
of P such that in every region of F containing at least
one point, there is a point whose color is unique among
the points in that region. The maximum over all point
sets of size n is the so called conflict-free coloring
number (cf-coloring in short), denoted by cf(F , n).
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Determining the cf-coloring number for different types
of regions F is the main aim in this topic. Regions for
which the problems has been studied include circles
([ELRS03], [PTT07], [Sm06], etc.) and axis-parallel
rectangles ([ChSzPT], [PT03], [AEGR07], etc).
It is also a natural case to assume that the ranges
are determined by the base-stations, i.e. if a client
is in the range of some base-station, then they can
communicate. For a finite set of planar regions F we
define cf(F) as the smallest number of colors which is
enough for coloring the regions of F such that for every
point in ∪F there is a region whose color is unique
among the colors of the regions covering it. For a (not
necessarily finite) set F of planar regions let cf(F , n),
the conflict-free region-coloring number of F be
the maximum of cf(F ′) for F ′ ⊆ F , |F ′| = n.

Modifying the definition of a conflict-free coloring,
wcf(F , P ) equals to the minimum number of colors
needed to color the points of P such that whenever a
region covers at least 2 of them, then there are 2 points
with different colors covered by it. The maximum over
all n element point set of size n is the weak conflict-
free coloring number (wcf-coloring in short), denoted
by wcf(F , n).

Observation 1 cf(F , n) ≥ wcf(F , n).

Further relaxing our definition we can define wcfk(F , P )
as the minimum number of colors needed to color the
points of P such that whenever a region covers at least
k of them, then there are 2 points with different colors
covered by it. The maximum of this value over all point
sets of size n is denoted by wcfk(F , n).

Observation 2 wcf(F , n) = wcf2(F , n).
wcfk(F , n) ≤ wcfl(F , n) if k ≥ l.

A simple corollary of a theorem of [ELRS03] shows
that the weak conflict-free coloring number gives a good
upper bound to the conflict-free coloring number. More
precisely, they present the following algorithm and prove
that it gives a conflict-free coloring. In each step take
a biggest color class in a weak conflict-free coloring of
the point set. After coloring it to a new color, delete it
and do the same for the new (smaller) point set. This
algorithm gives the following bounds, stated in [HS05]
in a slightly different way.
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Lemma 1 [HS05]

(i) If wcf(F , n) ≤ c for some constant c, then
cf(F , n) ≤ log n

log(c/(c−1)) = O(log n),

(ii) if wcf(F , n) = O(nǫ) for some ǫ > 0, then
cf(F , n) = O(nǫ).

Observation 1 and Lemma 1 show that wcf and
cf are usually close to each other. Often the best
known bound for cf is obtained from Lemma 1. This
is the main motivation why we want to determine the
weak conflict-free coloring number for different types of
regions.

Again we can define the dual version. For a finite F ,
wcf(F) equals to the smallest number of colors which
are enough to assign colors to the regions in F such that
for every point covered by at least 2 regions in F , there
are two differently colored regions among the regions
covering it. For a not necessarily finite F the maximum
of this value over all n element subsets of F is the weak
conflict-free region-coloring number, denoted by
wcf(F , n). Finally, we can again define wcfk(F , n) by
restricting the condition only for points covered by at
least k regions in F .
The dual version of Lemma 1 holds as well.

For the types of regions we study, the weak conflict-
free coloring number can always be bounded from
above by a constant not depending on n. Thus, we
define wcfk(F) = maxn wcfk(F , n) and similarly
wcfk(F) = maxn wcfk(F , n) if they exist. Our main
aim is to determine these numbers and give coloring
algorithms using this minimal number of colors.

2 Results

Our results are about bottomless rectangles and
half-planes. A bottomless rectangle is the set of points
(x, y) with a < x < b and y < c. We denote the set of
these regions by B. Note that for our purposes these
regions behave equivalently to axis-parallel rectangles
with bottom edges sitting on a common base line, an
interesting special case of the set of all axis-parallel rect-
angles.

We start with our results on bottomless rectangles.

Claim 2 (folklore) wcf2(B) = 3.

The following theorem determines wcfk(B) for every
k as this value decreases as k grows and it cannot go
below 2.

Theorem 1

(i) wcf3(B) = 3.

(ii) wcf4(B) = 2.

(iii) Such colorings can be found in O(n log n) time.

The first part of the theorem is proved by showing a
set of points which cannot be colored with two colors in
the desired way.
The proof of the second part of the theorem gives a
recursive coloring. We added the proof of this theorem
as this illustrates the most simply our general approach
used in all the proofs.

Proof. (ii) We want to color the points red and blue
such that any bottomless rectangle covering at least 4
points covers two differently colored points. From now
on a neighbor of some point means the neighbor in the
left to right order of the points.
We color the points in upwards order. We define P ′ to
be the set of points already processed. We start with P ′

being the empty set and reinsert the points in upwards
order. First we insert the lowest point of P into P ′ and
color it red. After each step we preserve the following
two assumptions on P ′. There might be some points
left uncolored in P ′, but no two neighboring points in
P ′ are left uncolored, moreover considering only the col-
ored points we never have two neighboring ones having
the same color (the coloring is alternating from left to
right). In each step we insert to P ′ the next point p

of P in upwards order, so p is above all the points of
P ′ \ {p}.
If p has only one neighbor in P ′, wlog. a right one, then
if this neighbor is colored, leave p uncolored. If this right
neighbor is uncolored then by assumption this neigh-
bor’s right neighbor must be colored, wlog. red. In this
case color p red and its right neighbor blue, preserving
the assumptions.
If p has a left and a right neighbor too among the al-
ready inserted points P ′ \ {p}, then if both of them are
colored, then they have different colors by assumption,
we leave p uncolored in this step. If only one of them is
colored, for example wlog. we can assume that its left
neighbor is colored red, then color p blue and its right
neighbor red, i.e. we color these two points to preserve
the alternating coloring. There are no other cases and
these steps preserve the assumptions.
In the end of this procedure there might be some points
still uncolored, we can color them arbitrarily, for exam-
ple color all of them red.
Computing the order of the points takes O(n log n) time,
the rest of the algorithm has n steps, each computable
in O(log n) time, the final coloring step takes at most
linear time, so the whole algorithm runs in O(n log n)
time.
Now we only need to prove that this coloring is good.
We need to consider bottomless rectangles covering at
least 4 points, so let B be such. Let p be the high-
est point covered by B. It is not the lowest point of
P . From now on we observe the step in the algorithm
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when we inserted p to P ′. Suppose that we colored p

in this step, wlog. red. Thus, by the algorithm all of
his neighbors (one or two) are colored blue in this step
or before. It is easy to see that B covers at least one
of them, and so B covers a red and blue point too, as
needed. If p was left uncolored then all of its neighbors
in P ′ were colored already before this step. Suppose p

has a left and a right neighbor too and B covers both
of them. By the algorithm they have different colors,
as needed. Otherwise, B covers only one neighbor of p,
suppose the right one, q. As B does not cover points of
P ′ to the left of p, it must cover at least 3 points to the
right of p. By the assumption always preserved by the
algorithm, at least one of p’s second and third neighbor
to the right must be colored as well and with a color
differing from the color of q. Thus, B covers a red and
a blue point, as needed. ¤

The following theorem about the region-coloring of
bottomless rectangles determines wcfk(B) for every k.

Theorem 2

(i) wcf2(B) = 3.

(ii) wcf3(B) = 2.

(iii) Such colorings can be found in O(n2) time.

The first part is proved by using a recursive coloring,
which we call the ‘divide and color method’, roughly
speaking we split the problem into some smaller parts,
color by induction and put them back together. The
proof of the second part is a more advanced application
of the same idea. The coloring algorithms we got here
are more complicated then in the proof Theorem 1(ii)
and their running time is a bit more as well, but still
bounded by O(n2).

Now we state the theorems about half-planes. We
denote the set of all half-planes by H.

Theorem 3

(i) wcf2(H) = 4.

(ii) wcf2(H, P ) ≤ 3, except when n = 4 and the 4th point
is inside the triangle determined by the first 3 points (see
Figure 1), in which case wcf2(H, P ) = 4.

(iii) wcf3(H) = 2.

(iv) Such colorings can be found in O(n log n) time.

The proof gives a coloring of the points on the convex
hull and of the points inside the hull using a different
algorithm.

Theorem 4

(i) wcf2(H) = 3.

(ii) wcf4(H) = 2.

(iii) Such colorings can be found in O(n log n) time.

Figure 1: The exceptional case of Theorem 3(ii)

In the proof we dualize the points and half-planes and
in this dual version we give an algorithm coloring the
points corresponding to the half-planes of the original
problem.

Problem 1 Determine the value of wcf3(H), i.e. the
lowest number of colors needed to color any finite set of
half-planes such that if a point of the plane is covered by
at least 3 of them then not all of the covering half-planes
have the same color.

The case of axis-parallel rectangles (denoted by R)
is still far from being solved, the best bounds are
wcf(R, n) = Ω( log n

(log log n)2 ) ([ChSzPT]) from below and

recently wcf(R, n) = Õ(n.382+ǫ) ([AEGR07]) from
above, improving the previous bound wcf(R, n) =

O(
√

n log log n
log n ) ([PT03]). So probably one of the most

interesting problems is still to give better bounds for
wcf(R, n), i.e. the lowest number of colors needed to
color any set of n points, such that if an axis-parallel
rectangle covers at least two of them then not all of
those covered by it have the same color.

The case of discs (denoted by D) in the plane is only
partially solved. One can check that a proper 4-coloring
of the Delaunay-triangulation of a point set gives a good
coloring for k = 2, and from that wcf2(D) = 4. Further,
in [PTT07] it is shown that wcfk(D) > 2 for any k.

Problem 2 Is it true for some k that wcfk(D) = 3? If
yes, find the smallest such k.

In the dual case, it is known that cf(D, n) = Θ(log n)
[ELRS03] but until recently it was not known whether
wcfk(D, n) can be bounded from above by a constant
for some k, when it was shown that wcf2(D, n) = 4
([Sm06]).

Problem 3 Give better bounds for wcfk(D, n) when
k > 2.
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