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A Lower Bound on the Area of a 3-Coloured Disc Packing
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Abstract

Given a set of unit-discs in the plane with union area
A, what fraction of A can be covered by selecting a
pairwise disjoint subset of the discs? Rado conjectured
1/4 and proved 1/4.41. Motivated by the problem of
channel-assignment for wireless access points, we con-
sider a variant where the selected subset of discs must
be 3-colourable, with discs of the same colour pairwise-
disjoint. For this variant of the problem, we conjecture
that it is always possible to cover at least 1/1.41 of the
union area and prove 1/2.77. We also provide an O(n2)
algorithm to select a subset achieving our 1/2.77 bound,
and a proof that this problem is 3SUM-hard, providing
strong evidence that our algorithm is optimal.

1 Introduction

R. Rado studied the following problem: What is the
largest c1 such that, given any arrangement of unit-discs
D in the plane, we can always select a pairwise disjoint
subset of discs that cover at least a fraction c1 of the
area of the union of D? The best we can hope for is
c1 = 1

4 , corresponding to the case shown in Figure 1
where a large number of unit-discs share a very small
intersection—the common intersection prevents us from
selecting more than a single disc, while the union area of
all discs approaches 4π. Rado proved a lower bound of
c1 = π

8
√

3
≈ 1

4.41 [11] and conjectured the lower bound
c1 = 1

4 .
In this paper, we study a variant of the above problem

in which the disjointness constraint on the selected sub-
set of discs is relaxed slightly. Given an arrangement of
unit-discs D in the plane, we want to find the largest c3

such that we can always select and 3-colour a subset of
the discs C such that their union area covers at least a
fraction c3 of the union area of D, under the constraint
that same-coloured discs must be pairwise disjoint. We
will prove that, for any given arrangement of unit-discs,
we can always achieve greater than c3 ≈ 1

2.77 . Our result
is stated formally in Theorem 1 below.
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Figure 1: Given a set of circles arranged in a circle with
a very small mutual intersection, the most area we can
cover is π

4π = 1
4 .

Note that it is not possible to achieve better than
c3 ≈ 1

1.41 , corresponding to selecting three minimally
pairwise intersecting discs in the arrangement shown in
Figure 1. We conjecture that this bound is achievable
for any arrangement of unit-discs.

Theorem 1 Let D be a collection of unit-discs in the
plane with union area A. For C a 3-coloured subset
of D with same-coloured discs pairwise disjoint, let AC

denote C’s union area. We can always select a C such
that c3 = AC

A > 1
2.77 .

The rest of this paper is organized as follows. In Sec-
tion 2 we present our motivation for exploring this prob-
lem and discuss some related problems. In Section 3 we
review Rado’s proof and discuss some techniques that
will make also make an appearance in our proof. In Sec-
tions 4 and 5 we present our proof of Theorem 1 and
a supporting lemma. In Section 6 we present an O(n2)
time algorithm to select a subset which achieves our
proven bound, and prove that this problem is 3SUM-
hard. Finally, Section 7 discusses bounds for k-colours.

2 Motivation and Related Work

Wi-Fi (IEEE 802.11) wireless networks are becoming
a ubiquitous feature in modern businesses, universities,
parks, etc. In a typical Wi-Fi deployment scenario, a set
of candidate locations are determined for wireless access
points (APs). A subset of the candidate locations must
be chosen along with a channel assignment for each in-
stalled AP in order to maximize the area covered by
the wireless network while minimizing interference. In-
terference occurs when two APs using the same chan-
nel are within range of one another, preventing users in
range of both APs from communicating with either AP.
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Supposing three channels are available, the wire-
less network deployment problem corresponds to the 3-
coloured disc packing problem discussed in Section 1.
Each disc represents the coverage area of a potential
AP placed at the disc’s center, and a 3-coloured disc
packing represents a deployment of APs with channel
assignments. Moreover, a study by wireless hardware
maker Cisco recommends that wireless network deploy-
ments only use three channels for networks with a high
volume of users [6].

A more sophisticated formalization of the deployment
problem allows discs assigned to the same channel to
overlap but only counts the area where there is no
interference—i.e. the area of the set of points covered
by only one disc on some channel. In terms of colouring,
the problem is to colour a subset of the given discs to
maximize the area of {p ∈ R2 | for some colour, point p
is in exactly one disc of that colour}. We call this the
1-covered area.

Asano et al. [3] proved that it is always possible to
achieve approximately A

4.37 1-covered area using only
one colour. This model has also been considered with
respect to two other optimization problems. For the
problem of maximizing the 1-covered area using one
colour, there is a PTAS due to Chen et al. [5]. Note
that unlike our worst-case area bound, they compare
the area covered to the optimum for that instance.

Another well-explored problem is conflict-free colour-
ing—here the goal is to minimize the number of colours
needed to 1-cover the whole area, i.e. the union of the
given discs. Even et al. [7] prove that O(log n) colours
are always sufficient and sometimes necessary for any
given discs of general radii. There is also work on online
algorithms for conflict-free colouring [8], and on conflict-
free colouring of regions other than discs [10].

3 Preliminaries

The basic idea behind our proof is similar to that used
by Rado [11]. His idea was to impose a regular trian-
gular lattice of side length 4 over the set of discs D
and, for each point in the union of D, to select one disc
containing that lattice point. The side length of the lat-
tice guarantees that discs selected in this manner will be
pairwise disjoint (see Figure 2). Thus, supposing we can
prove a lower bound of k on the number of lattice points
which intersect any given set of discs, we immediately
obtain a lower bound of c1 = πk for Rado’s version of
the problem. Such a lower bound on k is given by Rado
in [11], proving that given a set of geometric objects in
the plane with union area A, and a triangular lattice
in which each triangle has area α, we can always find
a translation of the lattice such that it intersects A

2α
points in the union area. A straightforward subsitution
of α = 4

√
3 (the area of an equilateral triangle with side

length 4) yields Rado’s result of c1 = π
8
√

3
.

4

Figure 2: A triangular lattice ensures that selected discs
are pairwise disjoint.

4 Proof of Theorem 1

Proof. To solve our variation of the problem we use a
finer triangular lattice with side length 4

√
3

3 . The points
of the lattice are 3-coloured such that no two lattice
points of the same colour are adjacent. For any place-
ment of the lattice, select a subset C of D as follows: for
each lattice point p in the union of D, select a disc con-
taining p and assign the disc the colour of p. The side
length of the lattice ensures that no disc contains two
lattice points so the selection and colouring are well-
defined. It also ensures that discs assigned the same
colour are pairwise disjoint (see Figure 3).

2

4· 3

3

2

1 1

4· 3

3

Figure 3: A finer 3-coloured lattice ensures only that
same-coloured selected discs are pairwise disjoint.

Also observe that, by the result of Rado in [11], we can
position the lattice to intersect the union area of D in at
least A

√
3

8 points, so |C| > A
√

3
8 . While same-coloured

discs in C are pairwise disjoint, differently coloured discs
may not be, so |C|π is only an upper bound on AC .

To derive a lower bound we will partition the union
of C using the lattice’s Voronoi tesselation which has
regular hexagonal cells of side length 4

3 (see Figure 4).
Suppose disc d ∈ C contains lattice point p which lies
in hexagonal cell h. If we count only the area of d ∩ h,
and sum over all d, this gives a lower bound on AC .
Thus if we establish a lower bound ∆ on the minimum
possible area of d ∩ h then AC > |C|∆ > A

√
3

8 ∆. In
Lemma 2, which we will prove in Section 5, we show
that ∆ ≈ 1.6645. From the lower bound on AC we
reach our intended lower bound on c3 of

c3 =
AC

A
=

A
√

3

8
∆ ≈ A

2.77

¤
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Figure 4: The Voronoi tessellation of the triangular lat-
tice points forms a grid of regular hexagonal cells.

5 Minimum Disc Hexagon Intersection

Lemma 2 Given a regular hexagon h with center point
X and side length 4

3 , and any unit-disc d intersecting
point X, the minimum area of intersection ∆ between h
and d is approximately 1.6645, or more precisely

∆ =

√
3

36
+

√
11

12
+

π

2
− 1

2
arctan

(
5
√

3−√11

5 +
√

11
√

3

)

Proof. We use elementary geometry to argue that the
minimum area of intersection is achieved by a disc d
with X on its boundary. Then, parameterizing by the
angle θ between the horizontal axis and the ray from X
to the center of d, we use the symbolic geometry pack-
age Geometry Expressions to give a formula for the area
of intersection and use Maple to compute 0’s of the first
derivative, finding that the minimum is as stated above,
and occurs in the configuration shown in Figure 5. Fur-
ther details are included in Appendix A. ¤

Our proof of Lemma 2 also shows that the lower
bound AC ≥ |C|∆ is tight, as shown by the example
in Figure 5 where the union of C is exactly partitioned
by the hexagons and each disc intersects its hexagon in
the minimum area ∆. However, note that this does not
mean that our bound on c3 is tight.

Figure 5: In this arrangement of selected discs, the lower
bound on the contribution of each disc is realized.

6 Algorithm

In this section we give an O(n2) time algorithm to se-
lect and 3-colour a subset C of a set D of unit-discs so
that the area bound given in Theorem 1 is realized. The

proof of the theorem is constructive, and the only algo-
rithmic issue is positioning the lattice so that at least
A
√

3
8 lattice points are in ∪D (the union of all discs

in D). We give an O(n2) time algorithm for this lat-
tice positioning problem. We also prove that the lattice
positioning problem is 3SUM-hard, providing evidence
that an O(n2) time algorithm is the best we can expect.

The idea, which comes from Rado’s paper [11], uses
the concept of the “fundamental cell” of a lattice—for
this lattice the fundamental cell F consists of a pair of
adjacent triangles (see Figure 3). Given an arbitrary
placement of the lattice, each triangle of the lattice can
be translated to F along with whatever part of ∪D is
contained in the triangle. The translated parts of ∪D
will overlap in F , and we want a point p of maximum
depth k. Positioning the lattice with a lattice point at
p ensures that k lattice points fall in ∪D. (This is how
Rado obtains the bound k > A

2α where α is the area of
one triangle.)

The one remaining detail is how to capture the trans-
lated portions of ∪D so that we can compute a point of
maximum depth. Our basic idea involves translating all
the discs and then computing and traversing their ar-
rangement. Each disc d intersects at most 4 translates of
F . We make 4 translated copies of d, and record which
translate of F they come from. Computing this set of
translated discs D′ takes O(n) time. Computing the
arrangement of D′, A(D′), takes O(n2) time using the
incremental insertion algorithm of Chazelle and Lee [4].

It is easy to traverse A(D′) to compute maximum
depth in D′—the depth increases when we enter a disc
and decreases when we exit. However, this is not quite
what we want; we want depth with respect to ∪D trans-
lated to F , which is different from depth in D′ due to
discs that overlap originally in D. Our solution is to
traverse A(D′) maintaining the depth ci in each trans-
late i of F . Note that there are O(n) translates of F
that intersect ∪D. We also maintain a count c of the
number of non-zero ci’s. The maximum value of c over
cells of A(D′) gives us what we want.

We now prove that the lattice positioning problem
discussed above is 3SUM-hard. A problem is 3SUM-
hard if it is harder than the problem of determining
whether a set S of n integers contains three elements
a, b, c ∈ S such that a + b + c = 0. The best known
algorithms for this problem take O(n2) and it is an open
problem to do better [9].

Theorem 3 The following problem is 3SUM-hard:
Given an integer k, real number s, and a set D of n
unit-discs in the plane, determine whether a triangu-
lar lattice of side length s can be positioned such that it
intersects the union area of D in at least k points.

Proof. We show that our problem is harder than the
known 3SUM-hard problem of determining whether
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there is a point of depth k in a set of unit radius discs in
the plane. The more general problem for variable radius
discs is proved 3SUM-hard in [2] and the reduction is
easily modified to produce unit radius discs.

Our reduction is as follows. Given a set D of unit
radius discs in the plane, place an equilateral triangle T
large enough to contain all of D. Expand T to a trian-
gular lattice, and translate each disc of D to a different
cell in the lattice. Let the translated set of discs be D′.
Then there is a point of depth k in D iff the lattice can
be translated to intersect D′ in k points. This reduction
takes linear time. ¤

7 Extension to k-Colours and Future Work

While it is fortuitous that our proof technique can han-
dle 3 colours, since that is relevant for channel as-
signment in wireless networks, it is interesting to see
what general bound can be derived for k-colours. Theo-
rem 4 presents some preliminary results, demonstrating
a bound for all k such that k ∈ {i2 + ij + j2 | i, j ∈ N}.
The number of such k lower than a given x ∈ N is given
by Θ( x√

log x
), so the set of such k is thin (density 0).

Theorem 4 Given k colours, where k ∈ {i2 + ij + j2 |
i, j ∈ N} we can select and colour a subset of discs such
that same-coloured discs are disjoint and their union

area covers at least A 1
(1+δk)2 where δk = 2√

3

(
2√

k− 2√
3

)
.

Proof. For all k ∈ {i2 + ij + j2 | i, j ∈ N}, distance
√

k
occurs in the unit triangular lattice L, and by π

3 rota-
tional symmetry, an entire sublattice with side length√

k exists. Thus we can partition L into k triangu-
lar lattices of side length

√
k and assign each a unique

colour. We then scale L such that distance 2 separates
the enclosing discs of Voronoi cells of same-coloured lat-
tice points by applying a scaling factor of αk = 2√

k− 2√
3

.

Now, each disc in D is assigned to the Voronoi cell con-
taining its center. We select from each Voronoi cell one
associated disc (if there are any) and colour it to match
the Voronoi cell’s lattice point. Note that by our scaling,
same-coloured selected discs cannot intersect.

If a point p is in ∪D but is not in any selected disc,
then the disc covering p intersects another disc with
center in the same Voronoi cell, and the distance be-
tween their center points is less than the diameter of
the Voronoi cell δk = 2√

3
αk. Now, if all selected discs

were blown up by a factor of 1+ δk, p would be covered
by some selected disc and the union of selected discs
would cover at most A(1 + δk)2. Thus, if we allow k
colours, we can cover at least A 1

(1+δk)2 . ¤

We are also continuing work on the 3-colour version
of the problem, and have recently improved our bound
to approximately 1/2.09.
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A Proof of Lemma 2

Our first claim is that the minimum area of intersec-
tion is achieved by a disc d positioned such that X, the
center point of hexagon h, lies on its boundary. Sup-
pose this is not the case. By symmetry, it suffices to
consider possible placements of Y , the center point of
d, within the intersection of wedge BXK and the unit
disc centered at X in Figure 6. For any position of Y ,
moving Y to the right along a line parallel to AB de-
creases the area of intersection, since the portion of d−h
lying above the supporting line of AB stays the same,
and the portion of d − h below the supporting line of
AB strictly increases (by containment). Thus we can
move Y to the right until it lies either on XK or the
boundary of the disc centered at X. For Y on XK,
moving Y towards K decreases d ∩ h because when the
diameter of d parallel to BC lies strictly inside h, the
area of d− h increases (by containment), and when the
diameter is not strictly contained in h, the area of d∩h
decreases (by containment).

A B

CX

K

E D

F

Y

Figure 6: Sliding disc d outward from the center of h
results in a smaller intersection between d and h

Thus we can restrict our attention to the minimum
area of intersection with h among discs whose boundary
contains point X. To find this minimum, we assume
that X = (0, 0) and express the area of intersection
f(θ) in terms of angle θ between the center of a disc d,
the center X of h, and the x-axis. There are two general
cases to consider. Case 1 occurs when d contains two
vertices of h (e.g. Figure 7). Case 2 occurs when d only
contains a single vertex of h (e.g. Figure 8). Note that
in either case we can express the area of intersection as
the sum of the area of a polygon and a circle sector.
For instance, in Figure 7 the area of intersection is the
sum of the area of polygon ABCED and the area of the
sector of d interior to angle ABC.

By symmetry, we need only consider the area of in-
tersection for 0 6 θ 6 π

6 . As a result, we can use the
cases shown in Figures 7 and 8 to derive a formula for
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Figure 7: Calculating the intersection area as a function
of angle θ (Case 1).
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Figure 8: Calculating the intersection area as a function
of angle θ (Case 2).

f(θ). Specifically, we use the symbolic geometry pack-
age Geometry Expressions to derive formulas relating θ
and the intersection points between the boundaries of d
and h (i.e. points A and C in Figures 7 and 8). The
derived formulas for these points, along with formulas
for the other points in Figures 7 and 8 are given in Ap-
pendix A.1 and A.2 respectively. From these formulas
we express the area of intersection in terms of θ using
standard formulas for the area of polygons and circle
sectors. This gives us formula f1(θ) for the area of inter-
section for 0 6 θ 6 arccos( 2

3 )− π
6 and formula f2(θ) for

the area of intersection for arccos( 2
3 )− π

6 6 θ 6 π
6 (see

Appendix A.1 and A.2. By symmetry, we extend this
to formula f(θ) for 0 6 θ 6 π

3 given in Appendix A.3.

A plot showing f(θ) for the interval 0 6 θ 6 π
3 is given

in Figure 9. Using Maple we find that f ′(θ) (the first
derivative of f(θ)) is 0 for θ = π

6 . Thus, by symmetry,
the minimum intersection occurs when X, the center
point of d and a vertex of of h are collinear. Computing
the value of f(θ) at any one of these points gives our
value for ∆, specifically
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0.3

1.68

1.66

theta

1.00.90.80.70.60.5

1.71

0.4

1.7

1.69

1.67

0.20.10.0

Figure 9: Plot showing the area of intersection for 0 6
θ 6 π

3 .

∆ =
√

3
36

+
√

11
12

+
π

2
− 1

2
arctan

(
5
√

3−√11
5 +

√
11
√

3

)

≈ 1.6645
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A.1 Derived Formula for 0 6 θ 6 arccos( 2
3 )− π

6 (see Fig. 7)

Ax(θ) =
1

3

√
3− 1

2

√
1−

(
−2

3

√
3 +

1

2
sin (θ)

√
3 +

1

2
cos (θ)

)2√
3− 1

4
sin (θ)

√
3 +

3

4
cos (θ)

Ay(θ) = 1 +
1

2

√
1−

(
−2

3

√
3 +

1

2
sin (θ)

√
3 +

1

2
cos (θ)

)2

+
1

4
sin (θ)− 1

4
cos (θ)

√
3

Bx(θ) = cos(θ)

By(θ) = sin(θ)

Cx(θ) =
1

3

√
3− 1

2

√
1−

(
2

3

√
3 +

1

2
sin (θ)

√
3− 1

2
cos (θ)

)2√
3 +

1

4
sin (θ)

√
3 +

3

4
cos (θ)

Cy(θ) = −1− 1

2

√
1−

(
2

3

√
3 +

1

2
sin (θ)

√
3− 1

2
cos (θ)

)2

+
1

4
sin (θ) +

1

4
cos (θ)

√
3

Dx(θ) =
2

3

√
3

Dy(θ) =
2

3

Ex(θ) =
2

3

√
3

Ey(θ) = −2

3

f1(θ) =
1

2
(Ax(θ)(By(θ)−Dy(θ)) + Bx(θ)(Cy(θ)−Ay(θ)) + Cx(θ)(Ey(θ)−By(θ)) + Ex(θ)(Dy(θ)− Cy(θ)) + Dx(θ)(Ay(θ)− Ey(θ)))

+
1

2

(
π + arctan

(− (−Bx(θ) + Cx(θ)) (−Ay(θ) + By(θ)) + (By(θ)− Cy(θ)) (Ax(θ)−Bx(θ))

(−Bx(θ) + Cx(θ)) (Ax(θ)−Bx(θ)) + (By(θ)− Cy(θ)) (−Ay(θ) + By(θ))

))

A.2 Derived Formula for arccos( 2
3 )− π

6 6 θ 6 π
6 (see Fig. 8)

Ax(θ) =
1

3

√
3− 1

2

√
1−

(
−2

3

√
3 +

1

2
sin (θ)

√
3 +

1

2
cos (θ)

)2√
3− 1

4
sin (θ)

√
3 +

3

4
cos (θ)

Ay(θ) = 1 +
1

2

√
1−

(
−2

3

√
3 +

1

2
sin (θ)

√
3 +

1

2
cos (θ)

)2

+
1

4
sin (θ)− 1

4
cos (θ)

√
3

Bx(θ) = cos(θ)

By(θ) = sin(θ)

Cx(θ) =
2

3

√
3

Cy(θ) = −1

3

√
−3 + 12 cos (θ)

√
3− 9 (cos (θ))2 + sin (θ)

Dx(θ) =
2

3

√
3

Dy(θ) =
2

3

f2(θ) =
1

2
(Ax(θ)(By(θ)−Dy(θ)) + Bx(θ)(Cy(θ)−Ay(θ)) + Cx(θ)(Dy(θ)−By(θ)) + Dx(θ)(Ay(θ)− Cy(θ)))

+
1

2

(
π + arctan

(− (−Bx(θ) + Cx(θ)) (−Ay(θ) + By(θ)) + (By(θ)− Cy(θ)) (Ax(θ)−Bx(θ))

(−Bx(θ) + Cx(θ)) (Ax(θ)−Bx(θ)) + (By(θ)− Cy(θ)) (−Ay(θ) + By(θ))

))

A.3 Derived Formula for 0 6 θ 6 π
3

f(θ) =





f1(θ) if 0 6 θ < arccos( 2
3
)− π

6

f2(θ) if arccos( 2
3
)− π

6
6 θ < π

6

f2(π
3
− θ) if π

6
6 θ < arccos( 2

3
)

f1(π
3
− θ) if arccos( 2

3
) 6 θ 6 π

3


