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Simplification of Scalar Data via Monotone-Light Factorizations
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Abstract

Using the monotone-light factorization of continuous
functions [7, 11, 12], we outline a new approach to data
simplification. This approach puts very few restrictions
on the sampling domain, and provides a mathematical
framework for computational methods simplifying sci-
entific and geometric data.

1 Introduction

This paper outlines extremal simplification [2], a new ap-
proach to data simplification that utilizes the monotone-
light factorization of a continuous function [7, 12, 11].
A finite data set on a topological space X must be in-
terpolated to a continuous function in order to make
use of the monotone-light factorization. As such, ex-
tremal simplification is comprised of two key steps: In-
terpolation of a discrete function by patches (section 4),
and simplification of the continuous interpolation (sec-
tion 3). In particular, extremal simplification provides
the mathematics required by algorithms that move from
discrete data to continuous interpolation to topological
structure, simplify the topological structure, and then
generate simplified data. Extremal simplification is cor-
rect in the sense that continuous interpolation of the
simplified data has the intended simplified topological
structure.

Various topological structures have been used to
guide simplification of scalar data, including the Reeb
graph or contour tree [3, 4, 10], the Morse-Smale com-
plex [1], and the persistence diagram [6, 5]. Extremal
simplification may be thought of as an enriched varia-
tion of Reeb graph methods; the additional information
provided by the monotone-light factorization provides
tools for analysis (section 5) and a foundation for further
algorithmic extensions. In addition, extremal simplifica-
tion provides a general theory of data simplification that
is well suited to a range of practical applications. These
generalities include flexibility in both input and output.
Indeed, extremal simplification applies to data sampled
on spaces of any dimension, as well as glued together
spaces such as networks and geometric models. Data
is simplified by removing local extrema; the extrema to
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be removed may be selected by arbitrary preference, by
persistence [6], or via local geometric measures [3]. Fur-
ther, extremal simplification does not uniquely specify
simplified data values, thereby allowing the simplified
data to be engineered to meet specific application re-
quirements.

2 Some requisite point-set topology

We give a brief overview of the definitions from point-
set topology that will be required in the sequel. All of
these are standard and there are many references, for
example [8]. We assume that the reader is familiar with
the definition of a metric space, as well as the basic
language of set theory.

A topological space X is a set together with a collec-
tion of open subsets U ; the only requirements are that
the the empty set ∅ and the entire set X be included
in this collection. Further, for open sets U1 and U2 the
open set U1 ∩ U2 ∈ U , as well as ∪i∈IUi ∈ U for an
arbitrary collection of open sets Ui ∈ U (the index set
I may be infinite). A basic example is the Real line R,
where the open sets are open intervals of the form (a, b)
for real numbers a < b (together with ∅ and R). These
open intervals form a basis of this topology on R. The
complement of an open set is a closed set.

A function f : X → Y between topological spaces
is called continuous if for every open set U ∈ Y , the
set f−1(U) ∈ X is open also. In the case where the
spaces X and Y are additionally metric spaces (as is,
for example, R), it can be verified that this definition
coincides with the standard epsilon-delta definition of
continuity. If g : Y → X is continuous with f ◦ g and
g ◦ f identity functions then X and Y are said to be
homeomorphic.

Given topological spaces X and Y , the product X×Y
may be given the product topology where the open sets
are generated by U × V for U and V open sets of X
and Y respectively. The plane R

2 = R × R is one such
example. Another standard topology is the subspace
topology: Any subset of X may be viewed a topological
space by intersecting open sets with the given subspace.
In this way, the graph of a continuous function f : X →
Y may be viewed as a topological space as a subspace
of X × Y .

We will make use of the quotient topology construc-
tion throughout. Given a topological space X and
a closed subset K (that is, the complement of K is
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open in X), we define the quotient X/K as the space
(X r K) ∪ {∗} where ∗ is a single point.1 It remains
only to describe the open sets for this new topological
space; the quotient topology. There is a natural map
associated to a quotient given by

q(x) =

{

x x /∈ K

∗ x ∈ K.

A set in X/K is declared open whenever the inverse
image q−1(K) is an open set of X . For example a circle
S1, as a topological space, may be obtained as a quotient
of R by any closed set of the form R r (a, b). In this
setting the quotient operation identifies two ends of a
closed interval.

More generally, given any equivalence relation ∼ on
the topological space X we may consider the quotient
X/ ∼ endowed with the quotient topology (above, the
equivalence relation is simply x ∼ y whenever x, y ∈
K). In this case the points of X/ ∼ are the equivalence
classes [x] = {y ∈ X |x ∼ y}. Again there is a natural
quotient map q, and the open sets are determined by
there inverse images.

The definitions given above are general, and exam-
ples of topological spaces abound. In practice however,
we need to make some additional assumptions on the
spaces used. Indeed our example R clearly has many
additional properties (it is a metric space, for exam-
ple). Extremal simplification applies to a finite data set
drawn from a Peano space X ; that is, a compact, con-
nected and locally connected metric space. We recall
these definitions presently.

A topological space X is said to be compact when
every cover of X by open sets contains a finite subcover
and connected whenever X = U1 ∪ U2 and U1, U2 6= ∅
implies that U1 ∩ U2 6= ∅. Note that S1 is compact and
connected, as is any closed interval in R.

It is easy to see that the curve given by sin
(

1
x

)

∪{0},
as a subspace of R

2, is connected. However, there are
open sets containing 0 that are disconnected. This is
an example of a space that is connected, but not locally
connected. A locally connected space X has the prop-
erty that the open sets of X may be described by a basis
of open sets which are connected.

It should be noted that for a topological space to be
given a metric structure, it suffices that the topological
space be regular (given a point x ∈ X and an open
set U containing x there is a closed set K such that
x ∈ K ⊂ U) and second countable (X has a countable
basis of open sets).

Peano spaces include bounded subsets of R
n (in par-

ticular, closed intervals in R as above, and graphs as
in section 3), and compact manifolds in any dimension

1Notation X r K indicates set subtraction: all elements of X

not in K.

(S1, for example). However, Peano spaces may be more
complicated; they can be of of variable dimension or
have fractal characteristics.

3 Monotone-Light factorizations and simplification
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Suppose f : X → R is a contin-
uous function defined on a Peano
space X . A classical result due to
Eilenberg [7] and Whyburn [11, 12]
states that f admits a unique monotone-light factoriza-
tion.2 That is, f = λ◦µ where µ : X → M is monotone
and λ : M → R is light. A function is called monotone
whenever the inverse image of a connected set is con-
nected, and light whenever the inverse image of a point
is discrete (that is, a finite collection of points). M is
called the middle space for the function f .

It is instructive to see how such a decomposition may
be constructed (cf. [12]). To each point y in the range
of f we may consider the level set f−1(y) ⊂ X . We
take as equivalence classes the connected components
of every such level set, and form the quotient, M =
X/ ∼. That is, [x] is the connected component of f−1 ◦
f(x) containing x. The associated quotient map is the
desired monotone factor µ, since the equivalence classes
are connected by construction. Now define the light
factor as λ([x]) = f ◦ µ−1([x]) = y.

From this decomposition, the function f factors
through the middle space M . In this setting M is a di-
rected graph. The light factor λ identifies each arc 3 of
M with a closed interval in R; the arc’s direction is from
smaller to larger. In general, this directed graph may be
infinite, but we restrict our attention to functions hav-
ing middle space M that is a finite graph (this is the
case for admissible interpolations, see section 4). As a
result, the middle space is the function’s Reeb graph [9].
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We now describe extremal
simplification. Let K ⊂ M be a
closed, connected subset of the
middle space M such that the
restriction to the boundary λ|∂K is constant. Suppose
that K has the additional property that if all arcs inter-
secting ∂K are outgoing (resp. incoming), then ∂K is
comprised entirely of minima (resp. maxima) of f . Such
a K is referred to as an extremal collapse set. Generally,
the middle space M has many extremal collapse sets
K; each choice of K results in a distinct simplification.
The key step for extremal simplification is to choose an
extremal collapse set K and to collapse K to a point,
resulting in a (simplified) quotient graph MK = M/K,
having fewer extrema M . In this case the graph MK

2In fact, the result is much more general; the range of f need

not be restricted to R.
3Arcs include their endpoints.
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determines a new monotone factor µK by composition
with the quotient. The new light factor is given by

λK(x) =

{

λ(x) x /∈ K

c x ∈ K

where c is the constant value of λ|∂K . Thus, the simpli-
fied function fK = λK ◦ µK has middle space MK .

Note that this new
function differs from
f by flattening the
region µ−1K, and is
familiar from the com-
putational topology
literature [3, 10]. We
call fK a flat simpli-
fication. An example
of a piecewise linear
function and one of its
flat simplifications is shown on the right, together with
their respective Reeb graphs.

The flat simplification fK is only one of many possi-
ble extremal simplifications of f that collapse K; how-
ever, we will not discuss the others in this paper, ex-
cept to mention that this flexibility will be useful in
applications. It is shown in [2] that extremal simplifica-
tion’s use of quotients is more general than contour tree
pruning rules [3]. Extremal simplification’s freedom to
choose the collapse set K allows successive simplifica-
tions to proceed in the order most appropriate to the
application.

4 Interpolation and patching

Suppose we have a finite set D ⊂ X and real-valued
measurements F : D → R; we refer to F as scalar data.
A continuous interpolation f is obtained by covering X
with patches, interpolating on each patch. There may
be many ways that X can be covered,4 and many ways
in which the individual patches may be interpolated.
Approaches in the literature include linear interpolation
on a triangular mesh, as well as bi-linear and tri-linear
interpolation on square and cubic meshes respectively.
In contrast, extremal simplification uses an axiomatic
approach to patch interpolation, as follows.

A finite collection P = {P1, . . . , Pn} of subsets of X is
a patch geometry whenever the following five conditions
are satisfied:

(1) P1 ∪ · · · ∪ Pn = X ;

(2) each Pi is connected;

(3) each Pi = P ◦
i (that is, each Pi is the closure of its

interior);

4Of course, we assume that at least one such covering exists.

(4) P ◦
i ∩ P ◦

j = ∅ whenever i 6= j (that is, intersection
of patches occurs only on the boundary); and

(5) each intersection Pi ∩ Pj has finitely many con-
nected components.

Functions hi : Pi → R (for i ∈ {1, . . . , n}) constitute
patch interpolants for F when hi|(Pi∩D) = F |(Pi∩D) and
the hi agree on the patch intersections, i.e. hi|Pj

=
hj|Pi

for all i, j ∈ {1, . . . , n}. Thus, the individual patch
interpolants combine to provide a patch interpolation
f : X → R for F by defining f |Pi

= hi.
Suppose patch interpolants h1, . . . , hn yield the patch

interpolation f . Choose any pair of indices i, j ∈
{1, . . . , n} (these need not be distinct), consider a con-
nected component C ⊂ Pi ∩ Pj . Let f ’s maximum
and minimum values on C be zmax = max

c∈C
{f(c)} and

zmin = min
c∈C

{f(c)}, and now consider the level sets

Hmax = f−1(zmax) and Hmin = f−1(zmin). We say
that D witnesses C whenever D ∩ C ∩ Hmax 6= ∅ and
D∩C ∩Hmin 6= ∅, and that D witnesses f when D wit-
nesses every component C of every intersection Pi ∩Pj .

We now impose an admissibility requirement on f :
The patch interpolation f is admissible if D witnesses
f and each patch interpolant hi is a monotone function.

Example. Barycentric interpolation on simplexes
having data at the vertices constitutes admissible in-
terpolation for any data.

Example. n-linear interpolation on n-cubes having
the data at the vertices is admissible only if the data F
is such that each cube’s interpolant is monotone. How-
ever, when some cells’ interpolants are not monotone,
then those cells can be subdivided into linearly inter-
polated simplexes, providing a hybrid patch geometry
having admissible interpolation.

Current research includes investigation of NURBS
and other commonly used interpolations with respect
to admissibility.

The following theorems show the importance of ad-
missible interpolations.

Theorem 1 Suppose f and f ′ are two admissible patch
interpolations of F , both defined on patch geometry P =
P1 . . . Pn. Then the monotone-light factorizations of f
and f ′ have identical middle spaces (Reeb graphs) and
identical light factors.

For patch geometry P , this result allows us to assign a
unique Reeb graph and light factor to the scalar data F ,
since the choice of interpolant is irrelevant. This in turn
allows us to define simplification of scalar data: Suppose
f is any admissible interpolation of F , and suppose f
has monotone-light factorization f = λ ◦ µ with Reeb
graph M . Choose any extremal collapse set K ⊂ M ,
and let fK be the flat simplification, having Reeb graph
MK and light factor λK . We now define simplified scalar
data as FK = fK |D.
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Theorem 2 fK is an admissible interpolation of FK

for patch geometry P.

Theorem 2 tells us that FK has Reeb graph MK and
light factor λK , as intended. Theorem 1 tells us that
every admissible interpolation of FK defined on P has
this same Reeb graph and light factor.

5 Approximation error

A simple analysis of f ’s Reeb graph M yields the per-
sistence [6] of each extremum; this is a scale measure-
ment that may be interpreted as the significance of the
extremum, defined as follows. Given a vertex p ∈ M
corresponding to an extremum of f , we will consider
real closed intervals I such that max(I) = λ(p) when
p is a maximum and min(I) = λ(p) when p is a min-
imum. Then there is a smallest such interval Ip such
that either (1) there is a point q 6= p with λ(p) = λ(q)
in the connected component of λ−1(Ip) containing p, or
(2) Ip = image(f). The length of Ip is the persistence
[6] of the extremum p.

The monotone-light factorization yields a lower
bound on approximation error for simplification. Sup-
pose that f, g : X → R are continuous functions.5

Let σ(f) denote the minimal persistence among f ’s ex-
trema.

Theorem 3 If g has fewer extrema than f then

max
x∈X

|f(x) − g(x)| ≥
σ(f)

2
.

This bound also applies to scalar data. Suppose F, G :
D → R are scalar data and P is a patch geometry such
that both F and G have admissible interpolations for
P . Define σ(F ) = σ(f) for any admissible interpolation
f of F , noting that this quantity is independent of the
choice of f .

Theorem 4 If G has fewer extrema than F then

max
x∈D

|F (x) − G(x)| ≥
σ(F )

2
.

6 Conclusion

This paper has introduced extremal simplification, a
useful consequence of the monotone-light factorization
of classical point-set topology. The monotone-light fac-
torization provides a mathematical foundation for rigor-
ous development of data simplification algorithms; de-
tails and proofs are found in [2]. Applicable to scalar

5Assume f and g have middle spaces that are finite graphs.This

is true, for example, when each function is an admissible interpo-

lation of scalar data as in section 4.

data defined on spaces of any dimension, extremal sim-
plification allows extrema to be removed in application-
specific order. Moreover, admissibility ensures that the
simplification is independent of the choice of interpo-
lation. We have also shown that approximation error
bounds can be proved for both scalar data and contin-
uous functions.
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