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Approximating k-hop Minimum Spanning Trees in Euclidean Metrics∗
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Abstract

In the minimum-costk-hop spanning tree (k-hop MST) prob-
lem, we are given a setSof n points in a metric space, a pos-
itive small integerk and a root pointr ∈ S. We are interested
in computing a rooted spanning tree of minimum cost such
that the longest root-leaf path in the tree has at mostk edges.
We present a polynomial-time approximation scheme for the
plane. Our algorithm is based on Arora’s et al. [5] technique
for the Euclideank-median problem.

1 Introduction

We are given setS of n points ind-dimensional Euclidean
space, a fixed positive integerk and a root noder ∈ S. The
k-hop spanning tree ofS is a treeT rooted atr and spanning
all points ofS, such that number of edges on any root-leaf
path is not greater thank. The cost ofT is the sum of its
edge lengths. In this paper we consider thek-hop spanning
tree problem of minimum cost (k-hop MST).

Based on the methods of Arora et al. [5] for the Euclidean
k-median problem, we present a polynomial-time approx-
imation scheme for thek-hop MST problem in the plane,
whenk is a constant.

As a byproduct of our algorithm, we also provide a
polynomial-time approximation scheme for the geometric
versions of the following more general problems:

The multi-level concentrator location problem.

Here, we are given a setS of nodes, a setC ⊂ S of clients
and ak sets of facilitiesF = F1∪ . . .∪Fk ⊆ Swith the open-
ing facility costs f j for each facility j ∈ F . The task is to
open subsets of facilitiesF ′

i ⊆ Fi , 1≤ i ≤ k and assign each
client to the closest level one facility inF ′

1, and assign each
of the level(i − 1) facilities to the closest leveli facilities
F ′

i , such that the opening facilities costs plus the sum of the
distances is minimized.

The bounded depth minimum Steiner tree problem.

Given a setS of nodes, a setD of Steiner points and a root
noder ∈ S, the task is to construct a minimum cost tree of
depthk, rooted atr that spans the setS and possibly using
some Steiner points from the setD.
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It is not difficult to see that thek-hop MST is just a spe-
cial case of the above two problems, and any solutions for
them would immediately imply a solution for thek-hop MST
problem.

Motivation

Minimum-cost spanning trees are pervasive and their effi-
cient construction appears important in many practical ap-
plications. For example, inmulticast-routingproblem in the
area of computer networks (see, e.g. [8, 7]) a number of
clients and a server are connected by a common communi-
cation network. The server wishes to transmit identical in-
formation to all client nodes. Most solutions to the multicast
problem involve computing a tree rooted at the server and
spanning the client nodes. The server then transmits the data
to its immediate children in the tree and intermediate nodes
forward incoming data to their respective descendants in the
tree. Tree-routing schemes allow for fast data delivery while
keeping the total network load low. Kompella et al. [14]
consider the problem of computing multicast-trees that mini-
mize the overall network cost as well as the maximum trans-
mission latency on any path in the tree connecting the server
to a client node. It is not hard to see that a multi-hop trans-
mission with too many hops will increase the latency of the
communication. Thus, assuming that all links in the network
have roughly the same transmission delay (which is a reason-
able assumption in local area networks), limiting the number
of hops in the transmission to some small integerk helps in
achievingfastandreliablecommunication protocols.

Related Work

In the classicmetric facility location problem, we are given a
set of clientsC and a set of facilitiesF with metric edge costs
ci j , for all i ∈ F, j ∈C and opening costfi for all facilities i ∈
F . The goal is to open a subset of facilitiesF ′ ⊆ F such that
the sum of opening facility costs, plus the sum of the costs of
assigning each client to its closest facility inF ′ is minimized.
The best known approximation algorithm is by Mahdian et
al. [15] that achieves 1.52 approximation ratio. Note that the
2-hop MST is a special case of the facility location problem,
e.g. replace each facility costfi by the distance fromi to
the rootr. Thus, all the approximation results for facility
location problem apply immediately to the 2-hop MST. Guha
and Khuller [10] proved that the existence of a polynomial
time 1.463-approximation algorithm for the metric facility
location problem would imply that P = NP. This hardness
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result also applies for the 2-hop MST problem.
For the Euclidean facility location problem a randomized

PTAS based on Arora’s [3, 4] technique for the Euclidean
TSP is presented in [5], for the points in the plane. Unfortu-
nately, ford-dimensional geometric instances andd > 2, the
algorithms runs only in quasi-polynomial time. However,
Kolliopoulos and Rao [12] were able to construct a nearly
linear time randomized PTAS for facility location problem
for anyd-dimensional Euclidean space. The small errors in
this paper were fixed by the authors in [13]. Another pla-
nar subdivision, namely the guillotine subdivision, was intro-
duced by Mitchell [16] for geometric optimization problems
in the plane.

Zhang [17] gives a 1.77-approximation algorithm for the
metric two-level concentrator location problemwhich is a
generalization of the 3-hops MST.

The first constant factor approximation for the bounded
depth steiner tree problem and likewise for thek-hop MST
in general metric spaces is presented by Kantor and Peleg
in [11]. They achieve an approximation ratio of 1.52·9k−2.

Althaus et al. [2] present an approximation algorithm that
computes ak-hop spanning tree in general metric spaces of
total expected costO(logn) times the cost of the optimalk-
hop MST. They approximate the metric space into a tree met-
ric using the result by Fakcharoenphol et al. [9] who showed
that any metric space can be probabilistically approximated
by a family of tree metrics such that the expected stretch in
the cost is at mostO(logn).

Clementi et al. [6] present an algorithm that computes with
high probability a constant approximation for constantk for
random instances in the plane.

Our Contribution

In this work we present the first PTAS for thek-hop MST
problem in the plane. We extend the technique of Arora et
al. [5] for the Euclideank-median problem and show that the
(1+ ε) solution for thek-hops MST problem can be com-
puted in polynomial time.

In Section 2 we review the quadtree dissection from [5]
and show that there exist a(1+ ε) solution to thek-hop
MST problem with respect to the given dissection. Further-
more, in Section 3 we show how to compute such an ap-
proximate solution with a dynamic programming algorithm

in timeO
(

(

n
ε
)O(1/ε)

)

.

We also extend our algorithm to the relatedmulti-level
concentrator location problemandbounded depth minimum
Steiner tree problemin Section 4.

2 Preliminaries

In this part we describe the quadtree dissection from [5] and
show the existence of approximately optimal solutions with
a simple structure based on a given dissection. LetSdenote

a set ofn points in the plane. Thebounding boxis the small-
est axis-aligned square that contains all points ofS. In the
following, we assume that the bounding box of the points
has side-lengthL = n/ε and all points ofS lie on gridpoints
of the unit grid defined on the bounding box. Note that the
cost increase of the optimum is negligible since moving each
point to the closest grid point will increase the minimum cost
k-hop MST by at mostε ·OPT.

A dissectionof a square is a recursive partition of the
square into lower level squares. More precisely, we view the
dissection as a hierarchical decomposition of the plane into
squares/boxes. A box in a dissection is any square that can be
obtained by a recursive splitting process that starts with the
bounding box and generally splits an existing dissection box
by 2 axis-orthogonal lines passing through its center into 4
identical subboxes. Such a decomposition naturally defines
a 4-ary tree. Each line is assigned a level. There are 2i level
i lines that partition leveli boxes into leveli +1 boxes. The
sizeof a box is its side length. A nice property of the dissec-
tion boxes is that any two boxes either have disjoint interiors
or one is contained inside the other. Note that there areO(L2)
nodes in the tree and its depth is logL = O(log(n/ε)).

We randomize the levels in the dissection of the bounding
box the same way as in [3, 4, 5]. Namely, randomly pick
two integers 0≤ a,b< L. The(a,b)-shift of the dissection is
defined by shiftingx andy coordinates of all lines bya and
b respectively, and then reducing moduloL.

In other words, the middle vertical line of the dissec-
tion is moved from thex-coordinateL/2 to thex-coordinate
a+(L/2)modL, and the middle horizontal line from they-
coordinateL/2 to the y-coordinateb+(L/2)modL. The rest
of the dissection is then wrapped-around, so that the left edge
of the dissection comes to rest at thex-coordinatea, and the
lower edge of the dissection comes to rest at they-coordinate
b. Note that we treat a wrapped-around square in the shifted
dissection as a single region.

Note that the solution to thek-hop MST problem consists
of collections of line segments. We will only allow the seg-
ments to bend and pass through a set of prespecified points
calledportals. More precisely, place 2imequally spaced por-
tals on each leveli line. Moreover, at the corner of each dis-
section box place a portal. Note that each leveli +1 box in
the dissection hasm portals on its two leveli + 1 edges and
strictly less thanmportals on its two leveli edges. In general,
any box in the dissection has at most 4m portals.

A solution to thek-hop MST problem is calledportal re-
spectingif it crosses a dissection box only at portals.

Suppose we are given the optimal set of line segments that
describe an optimalk-hop MST solution. To make the so-
lution portal respecting, we need to deflect each edge that
crosses a side of a box in the dissection to the nearest portal.
Note that if the size of the box isl , we need to deflect each
edge by at mostl/m to make it pass through a portal.

Since the shiftsa andb are chosen randomly, we have that
the probability that each vertical/horizontal linel in the grid
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is from the leveli: Pr[l is at leveli] = 2i/L. Using this fact,
Arora et al. [5] show the following Structure theorem:

Lemma 1 For any collection of line segments, random shifts
a and b and m≥ 1, the bending process will, with probability
at least 1/2, deflect the segments by at most O(logL/m) times
the sum of the length of the line segments.

Since the above Lemma 1 holds for any set of line seg-
ments, it also implies the following:

Corollary 2 Let r ∈ S denote the root node and let shifts a

and b be chosen uniformly at random. Let m= O
(

log(n/ε)
ε

)

for anyε > 0. Then, with probability of at least1/2 the cost
of the optimal portal respecting solution for the k-hop MST
problem is at most(1+ ε) ·OPT, where OPT denotes the
optimal cost of the k-hop MST.

3 The Algorithm

In this section we will describe the algorithm to compute an
optimal portal respectingk-hop MST which is with proba-
bility of at least 1/2 a (1+ ε)-approximation to the optimal
k-hop MST.

Consider any optimalk-hop MST. We assign each node a
level depending on the number of hops to the rootr, where
r is assigned level 0, its immediate neighbors are assigned
1 and so on. We also assign levels to the edges. An edge
from a leveli −1 node to a leveli node is assigned the level
i. Hence, we have nodes from level 0 tok and edges from
level 1 tok.

Consider now a box in the dissection as described in the
previous section. Remember that edges are only allowed to
cross the boundary of the box at portals. The optimal solu-
tion inside the box is fully determined if we know for each
portal and each leveli the distance from the portal to the
nearest node of leveli outside the box. Conversely, the opti-
mal solution outside this box is fully determined if we know
for each portal and each leveli the distance from the portal
to the nearest node of leveli inside this box.

Hence, if we fix all distances at the portals of a box to
all nearest nodes of levels 0 tok−1, only the solution inside
this box with minimal cost can be part of an optimal solution.
This enables us to design the following dynamic program.

We store in the table

Table(B, inside0, . . . , insidek−1,outside0, . . . ,outsidek−1)

the cheapest solution for boxB that respects the given in-
side and outside function, where insidei denotes the distance
function on the portals to the closest node of leveli inside
boxB. outsidei is defined analogously. In other words insidei

describes what boxB can provide to the outside and outsidei

describes what can be provided to boxB from outside. For
the distance function insidei we can still allow an additional
additive error ofl/m as the distance between two neighbor-
ing portals is alreadyl/m. Remember, that the size of boxB

Figure 1: All nodes actually
lie on top of each other and
the edges pass through one
portal.

Figure 2: All nodes actually
lie on top of each other and
the dotted lines have length
0.

is l and we have placedm portals on its boundary. Thus, we
have insidei(p) ∈ {0, l/m,2l/m, . . . ,2l ,∞} for a portalp and
two neighboring portals differ by at mostl/m. We assign
∞ as a value for insidei(p), if no node of leveli is inside the
corresponding box. Hence, we have at most 2m·34m possible
assignments per box for each insidei function.

A slightly different reasoning holds for the outsidei func-
tions. Here, the maximal distance from a portal to an out-
side node can be at most 2L. Again, we can allow an addi-
tional additive error ofl/m. Hence, we have outsidei(p) ∈
{0, l/m,2l/m, . . . ,2L,∞}. This sums up to at most 2Lm/l
different values and at most 2Lm/l ·34m possible assignments
per box for each outsidei function. This could be reduced
by making the gap between two consecutive values larger as
the distance becomes larger, since for larger distances we
anyway have a larger additional error due to a larger in-
terportal distance, but we omit this here. In total we have
T = 4Lm2 ·38mk entries in table Table per boxB.

Computing the table

We compute the table bottom up. There are two different
base cases:
1. The root r is inside the box B.We set

Table(B, inside0, . . . , insidek−1,outside0, . . . ,outsidek−1)

to cost 0 if

1. inside0(p) is at least the distance from each portalp to
the rootr, and

2. insidei is ∞ for i ≥ 1.

2. The box B contains at least one node but no root.
Note, that all nodes lie in the center of boxB and thus on

top of each other due to the initial perturbation. If insidei(p)
is at least the distance between the nodes in the box and each
portal p for all p then we connect a nodeq to the portalp′

such that dist(q, p′) + outsidei−1(p′) is minimal among all
portals of this box. We store this cost in the corresponding
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Table entry. If however, all inside(p) is ∞, i.e. this box does
not provide any reachable node to the outside, we have to
distinguish two cases. In the first case it is cheaper to connect
all nodes to a levelk−1 node as depicted in figure 1. In the
second case, it is cheaper to connect one nodeq to a node of
level at mostk−2 and then connecting all other nodes inside
the box to this nodeq as in figure 2. Which case we have
can be determined by looking at the corresponding outsidei

functions. We store the cost in the corresponding Table entry.
If we are not in the base case, the entry of

Table(B, inside0, . . . , insidek−1,outside0, . . . ,outsidek−1)

can be computed from the corresponding table entries

Table(B j , inside( j)
0 , . . . , inside( j)

k−1outside( j)
0 , . . . ,outside( j)

k−1),

for 1≤ j ≤ 4, whereB1, B2, B3 andB4 are the four sub-boxes
of B. Once all insidei and outsidei functions are fixed we
go through all possible inside( j)

i and outside( j)
i functions that

comply with distance functions of boxB. As we only have
approximate distances stored we again introduce an additive
error of at mostl/m per line segment. However, this error
is at most the error that occurs while making an edge portal
respecting for this box and hence, can be neglected here. We
sum up the corresponding costs forB1,B2,B3 and B4 and
store the minimal in the corresponding

Table(B, inside0, . . . , insidek−1,outside0, . . . ,outsidek−1)

entry. The time spend per box then amounts toO(T5)
As there areL2 boxes in the dissection the total running

time amounts toO(L2 ·T5) = O
(

(

n
ε
)O(k/ε)

)

.

We conclude with the main theorem

Theorem 3 The k-hop minimum spanning tree problem in
the Euclidean plane admits a polynomial time approximation
scheme.

4 Generalizations

The bounded depth minimum Steiner tree problem

Our approach easily generalizes to the shallow Steiner tree
problem. Here, one is also allowed to use Steiner points in
the bounded-hop MST. We just have to change the base case
in our algorithm. If we only have Steiner points inside a box
we have two options. Either use the Steiner point or do not
use it. This can be easily decided upon the distance functions
on the portals.

The multi-level concentrator location problem

If we assign levels to the Steiner points and also opening
costs for using a Steiner point we are left with the multi-
level concentrator location problem. This problem can also

be solved using our approach. We just have to add the open-
ing cost to the corresponding Table entry. For the initial per-
turbation it suffices to have a lower bound on the optimal
cost which is polynomial in the number of nodesn. The cor-
respondingk-level facility location problem obviously is an
n-approximation. Aardal et al. [1] showed how to compute a
3-approximation for this problem. Hence, the initial bound-
ing square has sizeL = 3n2/ε and the running time adapts
accordingly.

5 Conclusions and Open Problems

We provided the first polynomial time approximation
scheme for the k-hop minimum spanning tree and related
problems in the plane. The algorithm follows along the lines
of Arora et al. [5]. Thus, the algorithm can be generalized to
higher dimensions but with only quasi-polynomial running
time. It would be interesting to find a PTAS also for higher
dimensions.
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