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Abstract

In this paper, we study a Steiner tree related prob-
lem called “Terminal Steiner Tree with Bounded Edge
Length”: given a set of terminal points P in a plane,
one is asked to find a Steiner tree T such that any point
in P is a leaf in T and the length of each edge in T is
no more than a constant b. The objective of the prob-
lem is to minimize the number of Steiner points in T .
This problem is motivated from wireless network design
and has various applications in wireless network area.
We present a constant approximation algorithm for this
problem in this paper.

1 Introduction

Consider a wireless sensor network with n sensors, each
sensor has limited power so that it can only commu-
nicate with sensors within a limited range. Moreover,
these sensors can not relay the messages from the neigh-
bouring sensors due to its limited power and simple
functionality. In order to make the network connected,
we need to put some relays in this network. Since it has
cost to install relays, we want to minimize the number
of relays.

This application motivates the following problem.
Given a set of terminal points P in a 2-dimension Eu-
clidean space, one is asked to find a Steiner tree T such
that any point in P is a leaf in T and the length of each
edge in T is no more than a constant bound b. The
objective of the problem is to minimize the number of
Steiner points in T .

A practical variant of the well-known graph Steiner
tree problem is investigated in [5, 3, 2, 8]. In this vari-
ant, every terminal point is required to be a leaf in the
Steiner tree and the objective is to minimize the total
length of the tree. In [5], the authors presented hard-
ness results for this variant as well as a polynomial time
approximation algorithm with performance ratio ρ + 2,
where ρ is the best-known approximation ratio for the
graph Steiner tree problem (currently ρ ≈ 1.550, see
[9]). The approximation ratio was improved to 2ρ in
[3, 2], and further to 2ρ − ρ/(3ρ − 2) in [8].

Another variant of the Steiner tree problem called
“Steiner tree with minimum number of Steiner points
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and bounded edge-length” is studied in [6, 7, 1]. The
well known Steiner tree problem considers the minimum
length of tree. While in this variant, the objective is to
minimize the number of Steiner points under the con-
straint that the edge length of Steiner tree is bounded.
[6] presented a simple polynomial time approximation
algorithm whose worst-case performance ratio is 5. A
careful analysis in [7] showed that the performance ra-
tio of the algorithm in [6] is 4 and is tight. Moreover
[1] showed that there exists a polynomial-time approx-
imation with performance ratio 3 and there exists a
polynomial-time approximation scheme under certain
conditions.

Our problem is actually the combination of the above
two variants of the Steiner tree problem. However al-
gorithms for the above problems can not be applied to
our problem. In this paper we present a polynomial
time algorithm with constant performance ratio using
the MST heuristic algorithm in [6].

2 Algorithm and Analysis

In this section, we present properties of the optimal so-
lution. We also present our algorithm and show the
quality of our algorithm.

Lemma 1 There exists an optimal Steiner tree to the
problem such that if we remove all terminal points and
their corresponding edges, then for each Steiner point s
and two edges su, sv, the angle ∠usv is no less than
π/3.

Proof. Given an optimal Steiner tree TOPT , we can
modify it to satisfy the condition after removing all ter-
minal points and corresponding edges. Consider any
Steiner point s and two edges su and sv. Without loss
of generality, we assume |su| ≥ |sv|. If ∠usv > π/3,
we have |uv| < |su|. Thus we can replace su with uv
and get another optimal Steiner tree. By repeating this
process, we will get an optimal Steiner tree such that
for each Steiner point s and two edges su, sv, the angle
∠usv is no less than π/3. �

2.1 Our algorithm

Our algorithm is based on the following intuitive ob-
servation. Intuitively, if some terminal points are close,
we can treat them as one (i.e. use a steiner point to
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cover them). So instead of building the Steiner tree on
all terminal points, we group terminal points first and
then build the Steiner tree on the groups. Thus we have
the following algorithm TSTBEL as in Algorithm 1.

Algorithm 1 TSTBEL

1: Compute an approximate minimum disc cover of P
using discs with radius b.

2: Attach each point to the nearest disc center.
3: Treat the centers of discs as terminal points, find a

edge length bounded Steiner tree.

To compute a minimum disc cover, there exists poly-
nomial approximation schemes for disc cover using shift-
ing technology in [4].

In 2-dimensional case, the algorithm first partition
the bounding box of the input points into squares of
side length l ·D. Then it find optimal covering of points
in such a squre by exhausive search. In such a search,
the authors assume that any disk that covers at least
two of the input points has two of these points on its
border. The algorithm repeats the above process by
shifting the partition D distance to the right and get
the best covering of all the shifting as the output. The
authors proved that this algorithm is an approximation
scheme.

Theorem 2 [4] Let d ≥ 1 be some finite dimension.
Then there is a polynomial time approximation scheme
Hd such that for every given natural number l ≥ 1, the
algorithm Hd

l
delivers a cover of n given points in a

d-dimension Euclidean space by d-dimensional balls of

given diameter D in O(ld(l ·
√

d)d · (2n)d(l
√

d)d+1

) steps
with performance ratio ≤ (1 + 1

l
)d.

Using the algorithm in [4], we are able to compute
the centers with size no more than 1 + ǫ of that of the
optimal disc cover. Let l = 3

ǫ
, then we have

the performance ratio ≤ (1 + 1
l
)d

= (1 + ǫ

3 )2

≤ 1 + ǫ

(We are considering the points in a plane, so d = 2 in
our problem)

The step 3 of algorithm 1 can be done using the fol-
lowing algorithm 2 from [6]. The input of the algorithm
2 are a set P of n terminals and a given edge bound b.
The algorithm outputs a feasible tree TA spanning P .

Algorithm 2 Minimum Spanning Tree Heuristic

1: Compute a minimum spanning tree T for P .
2: Divide each edge in T into small pieces of length at

most b using the minimum number of Steiner points.
3: Output the final tree as TA.

It is shown in [7, 1] that the performance ratio of
algorithm 2 is 4 and tight.

Theorem 3 [7] The MST heuristic has an approxima-
tion factor of D − 1 in every metric space whose MST
number is D < ∞.

MST number is defined as maximum possible degree
of a minumum-degree MST spanning points from the
space. Since the MST number is 5 for the Euclidean
planes, the approximation ratio of MST heuristic is 4.

2.2 Analysis of our algorithm

We analyze the performance ratio of our algorithm with
these known results as follows.

Consider an optimal solution TOPT with Steiner point
set OPT to our problem. There exists a minimal sub-
set OPT1 ⊆ OPT that covers all the terminal points,
i.e. the discs of radius b centering at points in OPT1

covers all the terminal points and the size of OPT1 is
minimal among all possible such sets. Let OPT2 =
OPT \ OPT1.

Lemma 4 Let c be a center returned by step 1 of the
algorithm 1. Then there must exist a Steiner point p ∈
OPT1 such that |cp| ≤ 2b and vice versa.

Proof. Consider any terminal point t covered by the
disc with c as the center. In an optimal solution, t must
be cover by some Steiner point p ∈ OPT1. Thus |ct| ≤ b
and |tp| ≤ b. By triangle inequality, |cp| ≤ 2b.

On the other direction, consider any terminal point t′

covered by a Steiner point p ∈ OPT1, t′ must be covered
by some disc with center c′. Note |pt′| ≤ b and |t′c′| ≤ b,
we have |pc′| ≤ 2b by triangle inequality. �

Theorem 5 The approximation ratio of the algorithm
1 is 5 + ǫ.
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Figure 1: Construct a tree T according to a MST
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Proof. Let T ′ be the steiner tree output by algorithm
2 with OPT1 as the terminals and b as the bound. Let
ST ′ be the set of steiner points in T ′. Let T ′

OPT
be the

graph by removing all terminals from TOPT . Note that
T ′

OPT
is connected, the vertices set of T ′

OPT
is OPT ,

and the length of each edge is no more than b. Thus by
Theorem 3, |ST ′ | ≤ 4(|OPT | − |OPT1|) = 4|OPT2|.

Let C be the center of discs returned by step 1.
Clearly |C| ≤ (1 + ǫ)|OPT1| since discs with OPT1 as
centers can cover all the terminal points.

Let MSTOPT1
be the minimum spanning tree on ver-

tex set OPT1. We construct a connected graph Gc with
vertices set C according to MSTOPT1

as follows.

1. For each point p ∈ OPT1, we pick up a closest
point c ∈ C. If there is an edge p1p2 ∈ MSTOPT1

,
we connected c1 and c2 (See Figure 1). Let C ′ be
the set of points picked up in this process.

2. For each point c ∈ C \ C ′, pick up a closest point
c1 ∈ C, connect c and c1.

Clearly Gc is connected. Gc is not necessary a tree, so
we build a tree Tc from Gc by removing long edges from
cycles in Gc.

By Lemma 4, we have |cp| ≤ 2b in step 1. By triangle
inequality, |c1c2| ≤ |p1p2| + 4b. Thus the number of
degree 2 Steiner points on c1c2 will be no more than
that on p1p2 plus 4.

In step 2, if a point c ∈ C is not connected, there must
be a point p ∈ OPT1 within distance 2b of c by Lemma
4. In step 1, we already picked up a closest point c′ ∈ C ′

to p. By Lemma 4, |pc′| ≤ 2b. Thus |cc′| ≤ 4b by the
triangle inequality.

By triangle inequality, clearly the number of degree 2
Steiner points need to divide tree Tc is no more than

≤ |OPTT ′ | + 4|ETc
|

≤ |OPTT ′ | + 4(1 + ǫ)(|OPT1| − 1)
< 4|OPT2| + 4(1 + ǫ)|OPT1|.

Since our algorithm build an MST on C, it will output
a solution with Steiner points no more than that of Tc

≤ (1 + ǫ)|OPT1| + 4|OPT2| + 4(1 + ǫ)|OPT1|
= (5 + ǫ)|OPT1| + 4|OPT2|
≤ (5 + ǫ)|OPT |.

�
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