
Distance Preserving Terrain Simplification —

An Experimental Study

Boaz Ben-Moshe1 Matthew J. Katz2 Igor Zaslavsky2

1Department of Computer Science
College of Judea and Samaria, Ariel 44837, Israel

benmo@yosh.ac.il
2Department of Computer Science

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
{matya,igorz}@cs.bgu.ac.il

Abstract

The terrain surface simplification problem has been studied extensively, as it has important
applications in geographic information systems and computer graphics. The goal is to obtain a
new surface that is combinatorially as simple as possible, while maintaining a prescribed degree
of similarity with the original input surface. Generally, the approximation error is measured
with respect to distance (e.g., Hausdorff) from the original or with respect to visual similarity. In
this paper, we propose new algorithms for simplifying terrain surfaces, designed specifically for a
new measure of quality based on preserving inter-point (geodesic) distances. We are motivated
by various geographic information system and mapping applications.

We have implemented the suggested algorithms and give experimental evidence of their effec-
tiveness in simplifying terrains according to the suggested measure of quality. We experimentally
compare their performance with that of another leading simplification method.

1



1 Introduction

There are numerous papers dealing with terrain and surface simplification. A terrain can be
modeled as a triangulation (e.g., of a rectangular region R), with a height (z-coordinate) assigned
to each triangle vertex. Terrain models are commonly used to represent the surface of the earth.

Since terrain models can be huge, in particular when the resolution is high, it is often necessary
to simplify them prior to using them for analysis or visualization. Methods for terrain simplifica-
tion have been devised that transform a detailed terrain into a less detailed terrain, having fewer
triangles, in such a way that the simplified terrain is “similar” to the original terrain in some
sense. There are many possible ways to measure the degree of similarity between the original and
simplified terrains; some are exact (e.g., specifying an exact numerical error tolerance ε such that
the simplified terrain must lie within vertical distance ε of the original, at every point (x, y) ∈ R),
while other methods rely on qualitative notions of similarity (e.g., based on human perception of
similarity).

In this paper we propose a new way to measure quality of simplification that is especially appro-
priate for applications that compute and use geodesic distances between terrain points. Informally,
a simplification (of the desired size) is considered “good” by this measure if for any random set
X of pairs of points from the underlying rectangular region R, most of the distance information is
preserved with respect to X . That is, for most pairs {p, q} ∈ X , the distance between p and q on
the simplified terrain is not significantly different from the corresponding distance on the original
terrain.

This criterion is quite different from the commonly used criteria, since, for example, we do not
care if a very high and detailed mountain is replaced by a much lower and less detailed mountain,
as long as this change is not expected to have a significant effect on the distances computed for a
random set X of pairs of points. Notice that according to other criteria, e.g., the maximum vertical
distance between the terrains, the simplified terrain in the above example can deviate significantly
from the original one.

The distance-based quality of simplification measure suggested here is motivated by GIS and
mapping applications, where often a requirement for dramatic simplification and a requirement for
realistic distances come together. GPS devices are a typical example. We were also motivated by
the paper by Gudmundsson et al. [8], who consider the problem that is studied in this paper for
polygonal paths, rather than for terrains. Of course the nature of the solutions is different. While
there exist (polynomial-time) exact and approximation algorithms for the former problem, we only
seek good heuristics for the latter problem.

The rest of this paper is organized as follows. We first mention and discuss some related work.
Then, in Section 2 we formally define the (geodesic) distance-based quality of simplification measure
used in this paper to determine the similarity between the simplified and original terrains. In this
section we also describe how in practice we approximate distances on a terrain, by transforming
the corresponding triangulation into a denser graph.

In Section 3, we describe two general methods for terrain simplification. The first is the well-
known elimination method, and the second is a meta method that applies the former method in
a sophisticated manner. These methods are not designed for a specific similarity measure. The
meta method first divides the input terrain into rectangular pieces, each with more or less the same
number of vertices. It then assigns to each piece a simplification ratio based on the nature of the
piece and the similarity measure in use. Next, it applies the elimination method to each of the
pieces separately, and combines the simplified pieces into a single simplified terrain of the desired

2



size.
In Section 4, we devise two algorithms based on the elimination method — PLD and VP. The

former attempts to preserve local distances, while the latter attempts to minimize the volume of
the set of all points that lie between the original and simplified terrains. Next, we employ the
meta method to obtain variants of these two algorithms, called PLD’ and VP’, respectively. For
this, we must specify how the approximation ratio is determined given a rectangular piece. We
have developed a software package, named DPTS, that includes implementations of the above
four algorithms. Our package uses the Computational Geometry Algorithms Library (CGAL [5]).
Figure 2 depicts several terrains that were produced by the package.

In Section 5 we report on some of our experiments with algorithms PLD, VP, PLD’, VP’, as well
as comparisons with QSlim, a well-known quadric-based surface simplification package by Garland
(see [7]). Our main conclusions are that (i) VP is significantly better than PLD, (ii) a dramatic
improvement is achieved by replacing PLD by PLD’, and (iii) VP’ seems to be the most appropriate
among the five algorithms, with respect to the distance-based quality of simplification measure.

Related work. Extensive work has been done on many aspects of terrain approximation; see
Heckbert and Garland [9] for a survey. Most papers dealing with terrain simplification consider error
norms such as maximum vertical distance, Hausdorff distance, etc. Ben-Moshe et al. [2] suggested
a quality measure based on preserving inter-point visibility. Gudmundsson et al. [8] considered the
problem studied in this paper for polygonal paths. Given a polygonal path P = (p1, . . . , pn) and an
integer 1 < k < n, compute a path Q = (p1, pi2 , . . . , pik−1

, pn) of minimum dilation. They present
both exact and approximation algorithms for this problem, as well as for the version where the
stretch factor is given and one needs to minimize the number of vertices. Bose et al. [4] study the
area-preserving simplification problem for x-monotone polygonal paths in the plane. In general,
much work has been done on distance-preserving simplification from a theoretical point of view;
see the new book by Narasimhan and Smid [10] on geometric spanner networks, and, e.g., papers
[1, 6] that consider general graphs and are somewhat related to the problem studied in this paper.

2 A Distance-Based Quality of Simplification Measure

Let T (resp., T ′) be a terrain model consisting of n (resp., m) triangles, with n > m. We assume
that T and T ′ are defined over a common underlying rectangular region, R, in the (x, y)-plane.
For a point p ∈ R, let pT (resp., pT ′) denote the point in R3 that is obtained by lifting p onto the
surface of T (resp., T ′). Given two points p, q ∈ R, let GDT (p, q) be the geodesic distance between
pT and qT (i.e., the length of a shortest path on the surface of T between pT and qT ).

Let X be a finite set of pairs of points in R. (One can think of X as the set of edges of a graph
defined on a discrete set of points of R.) We define the similarity, in terms of geodesic distances,
between T and T ′ with respect to X . For each pair {p, q} ∈ X , compute the ratio GDT (p,q)

GDT ′ (p,q) . Let
V be the set of all these ratios. Then the similarity τX between T and T ′ with respect to X (or,
alternatively, the quality of simplification T ′ of T with respect to X ) is τX = 1

|V| · Σv∈V |1− v|.
Our goal is to develop a simplification method that produces simplifications of good quality for

small values of m, e.g., on the order of 0.5n or less, with respect to any “reasonable” set X of pairs
of points in R. Here, we consider X to be a reasonable set if it is a subset of some pre-specified
large (not necessarily finite) set Z of pairs of points in R, which is either generated randomly or
is a typical subset of point pairs arising in the underlying application. Some natural choices of Z

3



include (i) the set of all pairs of points in R, or (ii) the set of all pairs of grid points, for some
regular grid on R, or (iii) the set of all pairs of (projections onto the (x, y)-plane of) some subset
of the vertices of T . In Section 5 we report on experiments performed for choice (i), with the sets
X defined to be all pairs determined by a random subset of points of R.

In practice we prefer to approximate the geodesic distances GDT (p, q) and GDT ′(p, q), as de-
scribed in the next subsection.

2.1 Approximating geodesic distances

It is common to use a graph G in order to approximate the geodesic distance between two points
a and b on T . We define G as follows. Let δ be a parameter that depends on the average length of
an edge of T and on the desired degree of accuracy. For each edge e of T , place blen(e)/δc vertices
in the interior of e. Now, for each triangle t of T , draw an edge for each pair of vertices on t’s
boundary (including the original 3 vertices).

Figure 1: Approximating the geodesic distance between two points on a terrain. Top: a triangula-
tion consisting of 22 vertices and 38 triangles plus 45 edge-interior vertices, i.e., 67 vertices in total.
Bottom: a simplified triangulation consisting of 10 vertices and 14 triangles plus 56 edge-interior
vertices, i.e., 66 vertices in total.

Let a, b be two points on T . We use G to approximate GDT (a, b) as follows; see Figure 1. If
a and b happen to be vertices of G, then the distance between a and b is approximated by the

4



length of a shortest path in G between a and b; denote this length by ΠG(a, b). Otherwise, let
t1 (resp. t2) be the triangle to which a (resp. b) belongs. (If a (resp. b) is on an edge of T ,
then pick any one of the two possible triangles.) The distance between a and b is approximated
by minu1∈V (t1),u2∈V (t2){d(a, u1) + ΠG(u1, u2) + d(u2, b)}, where V (ti) is the set of vertices on ti’s
boundary, i = 1, 2, and d(a, u1) (resp., d(u2, b)) is the Euclidean distance between a and u1 (resp.
u2 and b).

3 General Methods for Terrain Simplification

In Section 4 we present two algorithms (PLD and VP) that are based on one of the standard methods
for terrain simplification — the elimination method. This method is described in Subsection 3.1.
Next, in Subsection 3.2, we describe a meta method that applies the elimination method in a
sophisticated way. We use the meta method to obtain two variants PLD’ and VP’ of algorithms
PLD and VP, respectively. Finally, we mention the well-known QSlim package 3.3 that we use in
our experimentation.

3.1 The elimination method

Algorithms PLD and VP are based on the well-known elimination method.

1. Start from the original triangulation T .

2. For each vertex v ∈ V (T ), compute its importance.

3. While T is not yet simplified enough
(i) Find a vertex v ∈ V (T ) with lowest importance.
(ii) Remove v from T .
(iii) Update T and the importance of the affected vertices.

In practice the vertices of T are stored in a priority queue H, where the priority of a vertex
is its importance. In order to obtain an actual algorithm, one needs to define the importance
of a vertex, the simplified enough condition, and the update operation after removing a single
vertex from the current triangulation.

In the PLD algorithm, presented in the next section, the importance of a vertex v ∈ V (T )
is high if there exists a pair of vertices in v’s immediate vicinity, such that the geodesic distance
between them is large with respect to the Euclidean distance between them. In the VP algorithm,
the importance of a vertex v ∈ V (T ) is proportional to the volume between T and the triangulation
obtained by removing v from T . See Section 4.2 for the precise definitions.

3.2 The meta method

The meta method first divides the input triangulation into rectangular pieces, each with more or
less the same number of vertices. It then applies the above simplification method (or any other
simplification method) to each of the pieces separately. Finally, it combines the simplified pieces
into a single simplified triangulation.

5



More precisely, one can think of the division stage as a preprocessing stage. In this stage,
the original triangulation T is first divided into m rectangular pieces T1, . . . , Tm, each with roughly
|V (T )|/m vertices. Next, for each rectangular piece Ti a value is computed, taking into consideration
the measure of quality of simplification that is being used. This value indicates how aggressive one
can be when simplifying Ti. Now given a simplification algorithm such as PLD or VP, and parameter
P2L (percent to leave) that tells us what percent of the vertices should remain in the output
(simplified triangulation), the simplification algorithm is applied to each of the rectangular pieces
separately. When applying the simplification algorithm to a rectangular piece Ti, P2L is adjusted
according to the value that was computed for Ti. Finally, the simplified pieces are combined into
a single triangulation with the desired number of vertices.

In our application, the value of a rectangular piece indicates how sensitive is this piece to the
removal of vertices, with respect to the similarity measure described in Subsection 2. For example,
a rectangular piece that is nearly planar, should have a value that indicates that it can be simplified
very aggressively. See Section 4.3 for an exact description of how the piece values are computed.

3.3 QSlim

QSlim, developed by Garland and Heckbert [7], is a more general algorithm designed for simplifying
all types of surfaces, not just terrains. QSlim uses simple edge contraction to perform simplification,
while using a quadric error measure for visual fidelity and for efficiency. QSlim is well-known for
its efficiency and high quality of approximation; we therefore picked it as a point of reference for
the new algorithms presented in this paper.

4 Distance-Preserving Terrain Simplification Algorithms

Let T be a Delaunay triangulation representing a rectangular terrain (i.e., a height value is asso-
ciated with each vertex of T ), and let P2L (percent to leave) be a parameter that tells us what
percent of the vertices of T should remain in the output (simplified triangulation). We begin this
section with a detailed description of the preserving local distances algorithm (PLD) and the volume
preserving algorithm (VP), that are based on the elimination method mentioned in Section 3. Next
we describe our implementation of the meta method that yields algorithm PLD’, if PLD is applied,
and algorithm VP’, if VP is applied.

In general, we deal with Delaunay triangulations. Thus, when a vertex v is removed from the
current triangulation, it is done by calling the Delaunay delete operation, that updates the current
triangulation. The set, Av, of vertices that are affected by v’s deletion, consists of all vertices whose
set of neighbors has changed as a result of v’s removal.

4.1 PLD

It remains to define the importance of a vertex, which is a value between 0 and 1. The importance
of a vertex u is computed right at the beginning, and is updated whenever u belongs to the set of
vertices that are affected by the deletion of a vertex (see above).

We use the following notation. N [u] is the set of neighbors of vertex u in T , ED(v, w) is the
Euclidean distance (in 3-space) between v and w, and GDT (v, w) is the geodesic distance between
v and w (i.e., the length of a shortest path on the surface of T between v and w).

6



Importance(T, u)

1. if u lies on the boundary of T then return 1

2. r ← 1

3. for each v, w ∈ N [u] do

4. if r > ED(v, w)/GDT (v, w) then

5. r ← ED(v, w)/GDT (v, w)

6. return (1− r)

In words, the importance of u is high (i.e., close to 1), if u has a pair of neighbors, such that
the geodesic distance between them is large with respect to the Euclidean distance between them.
In this case, u will not be deleted, i.e., local distances are preserved.

4.2 VP

This algorithm attempts to preserve the volume in the sense defined below. It is therefore reasonable
to expect that it would also perform well with respect to our quality of simplification measure.

The importance of a vertex u in this algorithm is proportional to the volume of the set of
all points that lie between the current triangulation T and the triangulation that is obtained by
(Delaunay) deleting u from T . That is, let T ′ be the triangulation obtained by deleting u from
T . A point p (in 3-space) lies between T and T ′ if and only if it is either above T and below T ′

or above T ′ and below T . In order to determine the importance of u (in T ), we approximate the
volume of the set X of all such points. We now describe how this is done.

Let Au be the set of vertices that are affected by the deletion of u (see above). Ignoring the
third dimension, let R be the (axis-aligned) bounding rectangle of Au. Let B be the 3-dimensional
box bounding both T and T ′ over R. We approximate the volume of X as follows.

Volume(X)

1. Let P be a set of l randomly generated points in B

2. Count ← 0

3. for each p ∈ P do

4. a ← pT

5. b ← pT ′

6. if (a.z < p.z < b.z) or (b.z < p.z < a.z) then

7. Count ← Count + 1

8. return (Count/l) ∗ volume(B)

Importance(T, u)

1. return Volume(X)

7



4.3 PLD’ and VP’

We need to describe the division stage (see Section 3.2), and, in particular, we need to define the
value of a rectangular piece.

The division itself is standard; it is similar to the division corresponding to a (2-dimensional)
k-d tree [3], except that we limit the number of levels by a small constant c. That is, we divide
the rectangle underlying T into two subrectangles by a horizontal or vertical line, such that the
number of vertices of T in each of the resulting subrectangles is roughly the same. Next we divide
each of these two subrectangles, etc. At the end of this process we obtain a division of the rectangle
underlying T into m = 2c rectangles, where each rectangle underlies a rectangular piece Ti of T
with roughly |V (T )|/m vertices.

We now define the value of a rectangular piece Ti. Informally, this value is equal to the average
ratio between the Euclidean distance between two points on Ti and the geodesic distance between
these points. The value is computed as follows, where R is the rectangle underlying Ti.

CalcPieceValue(Ti)

1. Let P be a set of l randomly generated points in R

2. val ← 0

3. for each p ∈ P do

4. for each q ∈ P , q 6= p do

5. a ← pTi

6. b ← qTi

7. val ← val + ED(a, b)/GDTi(a, b)

8. val ← val/
(

l
2

)

We now apply either PLD or VP to each of the m rectangular pieces. The value of a rectangular
piece Ti (together with the overall percent-to-leave requirement) tells us how aggressive we can be
when applying the simplification algorithm to Ti; that is, it determines the parameter P2L with
which PLD/VP is applied to Ti. More precisely, P2L (for Ti) is calculated as follows.

P2L ← 100− val(Ti)2

S
∗m(100− overall percent-to-leave) ,

where S is the sum, over all rectangular pieces Tj , of val(Tj)2.
In practice, Ti is passed implicitly to the simplification algorithm (PLD or VP), by passing

the original triangulation T and the rectangle underlying Ti. The output of the application of
the simplification algorithm to Ti is a subset of the vertices of Ti that is added to the subset
V ′ of the vertices of T that eventually determines the overall simplification T ′. After applying
the simplification algorithm to each of the pieces Ti, the overall simplification T ′ is obtained by
computing the Delaunay triangulation of V ′.

8



4.4 Running time

We analyze the algorithms above in terms of running time. Consider the elimination method
described in Section 3.1. Assuming the Delaunay triangulation is being used as well as a heap
storing the remaining vertices by importance, the expected running time of the elimination method
is O(|V |(log |V |+I)), where I is the expected running time of the computation of the importance
of a vertex. We have also assumed that the simplified enough condition can be evaluated in O(1)
time.

Consider algorithm PLD. Since the average degree of a vertex of a Delaunay triangulation is
O(1), the expected running time of the computation of the importance of such a vertex is O(1),
and we conclude that the expected running time of PLD is O(|V | log |V |). Consider algorithm
VP. The running time of the importance computation depends on l, the number of randomly
generated points in box B. Assuming l is some constant, the expected running time of V P is also
O(|V | log |V |). Finally, the division stage in algorithms PLD’ and VP’ can be done in O(|V | log |V |)
time, assuming c and l are constants, see above. Thus the expected running time of PLD’ and VP’
is also O(|V | log |V |).

5 Experimental Results

In this section we report on some of our experiments with algorithms PLD, VP, PLD’, VP’, as well
as comparisons with another software package — QSlim [7]. Tables 1-3 summarize our results.

5.1 Working environment

Our software package, DPTS, was developed in C++, under Windows XP, using the Compu-
tational Geometry Algorithms Library CGAL-3.2 [5]. The main data structures used are Delau-
nay triangulation 2, with the Euclidean metric, for the projection of a terrain model onto the plane,
and Triangulation euclidean traits xy 3. Points are represented by Cartesian<double>. Although
the points are in 3D, the predicates in the construction of the Delaunay triangulation are computed
using only the x and y coordinates of the points. Some of the modules were computed from scratch,
such as the module for approximating geodesic distances.

5.2 Terrain datasets

Three input terrains representing three different and varied geographic regions were used. Each
input terrain covers a rectangular area of 40–6,000 square kilometers and consists of 5,000-15,000
vertices. We avoided using very flat terrains which are easy to simplify under our similarity measure.
Instead, hilly terrains with interesting geographic elements, such as, craters, canyons, dunes, and
lakes, were used. We had to pick relatively small terrains, since the quality of simplification
computation (see below) is extremely time consuming. We note though that all our simplification
algorithms are quite efficient and can handle terrains with hundreds of thousands vertices.

5.3 Experiments using the distance-based measure

For each input terrain T , 4 simplifications were computed of sizes 70%, 50%, 30%, and 10%,
respectively, using each of the 5 simplification algorithms. (That is, for each input terrain T , 20

9



Simplification size PLD’ PLD VP’ VP QSlim
w.r.t. input size

10% 0.045268 0.091548 0.028649 0.026433 0.02929

30% 0.025535 0.032744 0.016866 0.018212 0.018491

50% 0.015798 0.016119 0.010795 0.011841 0.011123

70% 0.008815 0.008695 0.006209 0.005813 0.006272

Table 1: Southern Israel map.

Simplification size PLD’ PLD VP’ VP QSlim
w.r.t. input size

10% 0.048523 0.123608 0.028094 0.026186 0.02495

30% 0.023039 0.030387 0.018348 0.017794 0.017773

50% 0.015886 0.015514 0.012469 0.013613 0.013718

70% 0.00861 0.00802 0.007364 0.008152 0.008835

Table 2: Crater map.

different simplifications were computed). 3 sample sets, labeled A1, A2, A3 and consisting of 100
points each, were generated by randomly selecting points in the rectangle R underlying T .

The quality of simplification T ′ of T with respect to sample set A is computed as follows (see also
Section 2). For each of the

(|A|
2

)
pairs (p, q) of points in A, we compute the ratio |GDT (p,q)−GDT ′ (p,q)|

GDT (p,q) ,
where GDT (p, q) is the geodesic distance on T between pT and qT . The error of T ′ with respect to
A, denoted ErrT ′(A), is the average over all these

(|A|
2

)
ratios. The distance-preserving error of T ′

is ErrT ′ (A1)+ErrT ′ (A2)+ErrT ′ (A3)
3 .

Our results are presented in Tables 1–3. Consider, e.g., Table 1. This table summarizes our
results for an input terrain representing a region in southern Israel and consisting of roughly 13,000
vertices. The first line of the table refers to the 5 simplifications, each consisting of roughly 1,300 ver-
tices, that were computed using algorithms PLD’, PLD, VP’, VP, and QSlim, respectively. For each
of these simplifications, the table shows its error (see above). For example, the distance-preserving
error of the 10% simplification obtained by applying VP’ is 0.028649. Figure 2 corresponds to the
second line of Table 1.

Tables 1–3 lead us to the following conclusions (some of which may require additional experi-
ments in order to fully validate them).

• As expected, the error decreases as the size of the simplification increases. That is, each of
the columns is decreasing.

• VP is significantly better than PLD. (The latter is slightly better only in one case — Table 2,

Simplification size PLD’ PLD VP’ VP QSlim
w.r.t. input size

10% 0.088395 0.101355 0.065091 0.045292 0.042831

30% 0.036856 0.046502 0.027093 0.027616 0.027235

50% 0.024968 0.02958 0.017517 0.018293 0.016728

70% 0.014865 0.016158 0.010154 0.008359 0.011327

Table 3: Northern California map.

10



Figure 2: The input terrain of southern Israel (the brighter the higher), and the 5 simplifications,
each of roughly 3900 vertices, that were computed; see Table 1, second line. Top left: input terrain.
Top middle: VP. Top right: PLD. Bottom left: QSlim. Bottom middle: VP’. Bottom right: PLD’.

last line.)

• In general, a dramatic improvement is achieved by replacing PLD by PLD’, especially when
the simplification size decreases.

• The differences between the errors obtained for VP and VP’ are small, where each wins 1/2
of the times.

• The error obtained for VP’ is usually slightly smaller than that for QSlim; VP’ wins 2/3 of
the times. The advantage of VP’ over QSlim increases when the simplification is not too
small.

Figure 2 suggests an explanation for the inferiority of PLD. As can be seen, PLD tends to
leave too many vertices in “abnormal” regions with sharp geographic features, and therefore too
few vertices in “normal” regions. Since usually a large portion of the terrain consists of “normal”
regions, and since the sample points are chosen randomly, geodesic distances are not well preserved
for many of the pairs of sample points. By replacing PLD by PLD’, we introduce a global consid-
eration, which explains the significant improvement that is achieved.

Acknowledgment. The authors wish to thank Michael Elkin and Joseph Mitchell for helpful
discussions.

11



References

[1] I. Abraham, Y. Bartal, H. T-H. Chan, K. Dhamdhere, A. Gupta, J. M. Kleinberg, O. Neiman,
and A. Slivkins. Metric embeddings with relaxed guarantees. In Proc. 46th IEEE Symp.
Foundations Computer Science, pages 83–100, 2005.

[2] B. Ben-Moshe, M. J. Katz, J. S. B. Mitchell, and Y. Nir. Visibility preserving terrain simplifi-
cation — An experimental study. Comput. Geom. Theory Appl. 28(2-3) (June 2004), 175–190.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications, Second Edition. Springer-Verlag, 2000.

[4] P. Bose, S. Cabello, O. Cheong, J. Gudmundsson, M. van Kreveld, and B. Speckmann. Area-
preserving approximations of polygonal paths. Journal of Discrete Algorithms, 4 (2006), 554–
566.

[5] CGAL Editorial Board. CGAL-3.2 User and Reference Manual. 2006.
http://www.cgal.org/Manual/3.2/doc html/cgal manual/contents.html

[6] D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In Proc.
ACM-SIAM Symp. Discrete Algorithms, pages 660–669, 2005.

[7] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In Proc.
SIGGRAPH’97, pages 209–216, 1997.

[8] J. Gudmundsson, G. Narasimhan, and M. Smid. Distance-preserving approximations of polyg-
onal paths. Comput. Geom. Theory Appl. 36 (2007), 183–196.

[9] P. S. Heckbert and M. Garland. Survey of polygonal surface simplification algorithms.
Manuscript.

[10] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press,
2007.

12


