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Abstract

A quadtree-based triangulation, sometimes called an
RTIN, is a common hierarchical representation of ter-
rain for 3D visualization. In this paper we focus on the
memory/error bound trade-offs for using RTINs with
planar and quadratic surface patches over triangles.

1 Introduction

Terrain data in Geographic Information Systems is of-
ten sampled on raster grids, but displayed as a TIN
(Triangulated Irregular Network), which is a collection
of triangles. A Right-Triangulated Irregular Network [5]
is a special TIN using isosceles right-angled triangles,
formed as a binary tree by splitting along the perpen-
dicular bisector to the hypotenuse. Both RTINs and
general TINs are irregular in structure, allowing non-
uniform sampling of the terrain. Though an RTIN typ-
ically has more triangles for a given error-bound than
other TIN variants, for gridded data it has advantages.
The most important is that it is hierarchically struc-
tured like a quadtree [12], so it can avoid storing edge
and neighbor information and derive this information
from the hierarchy. In this paper, we explore the mem-
ory requirements for TIN vs RTIN representations, and
compare using planar or curved triangles.

There has been much work in approximation surfaces,
particularly on multi-resolution representation of spa-
tial data in quadtree-like structures. RTINs have been
independently developed in several large-scale terrain
visualization systems [9, 4, 3, 8, 10]. Evans et al. [5],
in particular, try to minimize memory and give code
for computing neighbors in constant time. Triangular
quadtrees based on equilateral triangles [6, 7] are essen-
tially equivalent—each triangle is broken into four and
triangles can be identified by integer ids, and neighbor
indices can be computed in constant time. Other repre-
sentations for curved triangles come from Akima [1, 2],
who defined quintic bivariate polynomials to represent
height fields over triangles, and Preusser [11], who de-
fined C2 bivariate Hermite polynomials over triangles.
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Figure 2: Portion of an RTIN and some neighbor cases.
Triangle ids are at their right angles.

2 RTIN Representation

We save memory in the RTIN in a couple of ways. First,
we need not store x and y coordinates or pointers to
neighbor triangles because we can recover them from the
hierarchy. We represent the mesh as a list of triangles,
and a hash table with references to these triangles. Each
triangle has a binary id that identifies whether the left
or right triangle is chosen at each split. Second, since
we assume we can obtain neighbors, we store only the
north-west vertex with each triangle, and obtain the
other vertices from the neighbors.

Since we rely on neighbor computation, we want it
to be efficient. Lee et al. [6, 7] and Evans et al [5] give
methods to compute neighbors of triangles from their
indices in constant time, drawing on Schrack’s work on
linear quadtree indexing [13]. In the paper we show that
it is sufficient to be able to include the same level neigh-
bor across the hypotenuse, which we show can be done
with O(1) AND (·), exclusive-OR (⊕), multiplication
by 2, and addition (+) operations: HNeighbor(T )

1. Assume M = (10)∗ is precomputed.

2. D = (T ⊕ 2T ) ·M .

3. R = D + 2D.

4. C = R⊕ (R + 11).

5. Return T ⊕ C.
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Figure 1: Surface representation using (a) regular TIN (9,909 triangles), (b) RTIN with piecewise linear triangles
(40,759 triangles), (c,d) RTIN with piecewise quadratic triangles (10,794 triangles; (d) has smoothed normals).

3 Quadratic surface patches

In a triangulated terrain, each triangle typically ap-
proximates a region covering several grid points. We
were interested in knowing whether, for a given error
bound, the overhead of storing coefficients for represent-
ing quadratic patches instead of linear patches would be
offset by the reduction in the number of triangles. A
quadratic patch over a triangle could be represented by
the standard basis:

z = c0x
2 + c1y

2 + c2xy + c3x + c4y + c5, (1)

but we observe some benefits of using a basis from
barycentric coordinates, which is up to constants, the
multivariate Bernstein basis.

The six coefficients can be determined in several ways.
We use two: (1) by fixing vertices and tangents at edge
midpoints and (2) using a best-fitting polynomial to the
N sample points that lie within the triangle. Fixing
vertices and edge-midpoints does not attempt to fit any
of the interior points to the polynomial surface, but is a
simple way to ensure that curves match along triangle
edges. A best-fitting polynomial should fit the interior
points to the surface more tightly, with the overhead of
having to minimize a linear system with 6 variables and
N constraints, but causes cracking between triangles.
Fixing vertices and using best fit for edges, easily done
in barycentric coordinates, seems to work well.

4 Experiments and Results

Our goal was to compare memory vs. accuracy
for different representations. We used test data
from different sensors and landforms, downloaded
from the USGS Seamless Data Distribution System
(http://seamless.usgs.gov). Additional tables are given
in the full paper; in this abstract we simply include one
table, one graph, and some illustrations for different pa-
rameter values.

Our triangle representation requires only an index
and a vertex pointer per triangle. Using quadratic poly-
nomials adds 5 coefficients. An ordinary linear TIN has

Figure 3: Meshes for planar (3,837 triangles) and
quadratic (1,481 triangles) representations that have
similar error.

SNo. No. Triangles Memory Total Error
in KB ×106 m

(a) 3,535 27.62 6.567
(b) 4,657 36.38 5.990
(c) 5,688 44.44 5.471
(d) 7,384 57.69 4.929
(e) 9,766 76.11 4.554
(f) 12,972 101.34 4.013
(g) 17,939 140.15 3.626
(h) 40,759 318.43 2.825
(i) 91,485 714.73 2.077

Table 1: Error Vs. Memory usage from experiments
with the planar surface representation on RTINs using
University of Utah grid. (Refer to Figure 4(a)-(i).)

a similar cost of about 60 bytes per vertex, or 30 bytes
per triangle. Figure 3 shows the triangle meshes ob-
tained from the planar and polynomial representations.
The polynomial representation has fewer triangles, as
expected. Considering the fact that each triangle in the
polynomial representation needs 3.5 times more storage
than the planar triangles, the reduction in the number
of triangles still does not allow us to easily choose be-
tween the two representations. However, some applica-
tions need to store more information with the triangles
(e.g., vegetation, water flow, or data statistics) and the
observed reduction can significant.

Figures 4 and 5 show the variation of absolute error
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Figure 4: Absolute error grids from the planar surface representation on RTINs, University of Utah data. As the
absolute error increases, the color changes from black to green to yellow to red.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5: Absolute error grids from the quadratic surface representation on RTINs, University of Utah data.

over the entire region. The number of triangles in the
RTINs and vertices in the regular TINs are chosen so
that the total memory utilization varies over a common
range (about 25 KB to 750 KB). For each such repre-
sentation, we record the sum of absolute errors over all
grid points.
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Figure 6: Comparison of memory usage vs. accuracy
between various surface representations

Figure 6 shows plots of memory usage vs. cumulative
error over the entire grid, for three representations of the
terrain. Note that although the planar representation is
slightly better than the polynomial representation using
RTINs, it might not be so in applications where each
triangle in the structure must also contain additional
terrain information (such as type of land form or land
use, drainage, texture or satellite image coordinates).

In such applications, could realize a significant benefit
from the reduction in the number of triangles required
by a polynomial representation.

5 Discussion

In this paper we compare memory requirements for
RTINs using planar and quadratic surface patches. (We
also simplify code for fast neighbor computations in
RTINs.) RTINs provide a more useful representation
than general TINs for gridded data, since they provide
a hierarchy of levels of detail, instead of just a single
level. Thus, we believe their larger number of trian-
gles, offset by the small per-triangle size, makes them a
better choice.

Using polynomial surface patches depends on how
much per-triangle or per-vertex data is to be stored.
Since with curved patches one can use fewer triangles,
with more data per triangle the advantage swings to
polynomial patches. More should be said about the
best way to fit interior grid points tightly to the poly-
nomial surface. We have used only quadratic surfaces,
but it might be useful to try cubic surfaces too. Using
higher degree polynomials have the overhead of storing
more and more coefficients, not necessarily guarantee-
ing a tighter fit to the grid points. In fact, polynomial
patches of degree 5 or higher tend to be noisy.
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