
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Efficient Snap Rounding with Integer Arithmetic

Binay K. Bhattacharya∗ Jeff Sember†

Abstract

In this paper we present a slightly modified definition
of snap rounding, and provide two efficient algorithms
that perform this rounding. The first algorithm takes n
line segments as input and generates the set of snapped
segments in O(|I| + Σc is(c) log n + |I∗m|), where |I| is
the complexity of the unrounded arrangement I, is(c)
is the number of segments that have an intersection
or endpoint in pixel column c, and I∗m is the multi-
set of snapped segment fragments. The second algo-
rithm generates the rounded arrangement of segments
in O(|I| + Σc is(c) log n + |I∗| log n), where |I∗| is the
complexity of the rounded arrangement I∗. Both use
simple integer arithmetic to compute the rounded ar-
rangement by sweeping a strip of unit width through
the arrangement, are robust, and are practical to im-
plement. They improve upon existing algorithms, since
existing running times either include a logarithmic fac-
tor in |I|, (i.e., |I| log n), or depend upon the number of
segments interacting within a particular hot pixel (is(h)
and ed(h) [7], or |h| [3]), whereas ours are linear in |I|
and depend upon the number of segments interacting
in an entire hot column (is(c)), which is a much coarser
partition of the plane.

1 Introduction

Snap rounding is a method for transforming an
arbitrary-precision arrangement of segments to a fixed-
precision representation, while attempting to retain cer-
tain features of its geometry and topology.

We are given a set S = {s1, . . . , sn} of line segments
in R2. We wish to round the arrangement I of S to
a grid of pixels. In this note, we assume that segment
endpoints are integers (though our algorithms can han-
dle endpoints that are rational numbers), and each pixel
is centered at a point with integer coordinates. In snap
rounding, each pixel containing a vertex in I is ‘hot’,
and segments intersecting any hot pixel are rerouted to
pass through the pixel’s center (a process we call snap-
ping the segment to a pixel); see figure 1.

We refer to each original (unrounded) line segment as

∗School of Computing Science, Simon Fraser University, Burn-
aby, B.C., Canada, V5A 1S6, binay@cs.sfu.ca; research is par-
tially supported by NSERC and MITACS

†School of Computing Science, Simon Fraser University, Burn-
aby, B.C., Canada, V5A 1S6, jpsember@sfu.ca

an ursegment, and the polygonal line resulting from its
being snap rounded a polysegment. Each polysegment
is comprised of fragments.

Figure 1: Snap rounding a set of line segments.

Snap rounding was introduced independently by
Hobby [8] and Greene [4]. An algorithm with run-
ning time O(n log n + Σh∈H |h| log n) was given in [3],
along with a randomized algorithm with the same ex-
pected running time (H is the set of hot pixels, and |h|
is the number of segments intersecting a pixel h). An
O((n + |I|) log n) algorithm was presented in [2]. Al-
gorithms with running times of O(Σh∈His(h) log n) and
O(Σh∈Hed(h) log n) were given in [7], where is(h) is the
number of segments with an intersection or endpoint in
pixel h, and ed(h) is the description complexity of the
crossing pattern within h, which never exceeds is(h).
All of these algorithms rely on high precision computa-
tion.

A dynamic algorithm for snap rounding based on ver-
tical cell decompositions was presented in [5]. A variant
of the problem, iterated snap rounding, was investigated
in [6, 9].

2 A modified definition of snap rounding

In this section, we investigate some properties of a snap
rounded arrangement, and introduce a slight modifica-
tion to the usual procedure that still produces polyseg-
ments that properly intersect only at hot pixel centers.

An ursegment s is hot in pixel h if h contains an end-
point of s or a proper point of intersection between s
and some other ursegment. We can also say that h is
hot for s. An ursegment s is warm in pixel h if s is not
hot in h, yet intersects h and h is hot for at least one
other ursegment s′. We can also say that h is warm for

19th Canadian Conference on Computational Geometry, 2007

s. We can extend these definitions to deal with columns
of pixels: i.e., ursegment s is hot within column c.

Note that the hot pixels for an arrangement of urseg-
ments are exactly those pixels that are hot for some
ursegment, and that ursegments that are hot or warm
within a pixel are snapped to that pixel.

If ursegment s is hot in column c, let H be the set
of all pixels in c that are hot for s. The uppermost
and lowermost pixels in H are external hot pixels with
respect to s.

Lemma 1 Let h be a hot pixel which is not external
with respect to any of the set of ursegments. Let s be a
ursegment that is hot in h. The portion of the polyseg-
ment for s intersecting h will be a vertical line segment
bisecting h.

Now consider a new definition of snap rounding, in
which a pixel is only hot if under the old definition it is
an external hot pixel for some ursegment.

Theorem 2 Using our new definition of snap round-
ing, polysegments of a set of ursegments will properly
intersect only at hot pixel centers.

Proof. Assume by way of contradiction that with new
snap rounding, some pair of ursegments s1 and s2 yield
polysegments that properly intersect at a point that is
not a hot pixel center.

The continuous deformation introduced by Guibas
and Marrimont [5] can be used to show that if such an
intersection occurs, it can only occur at a pixel that was
hot under the old definition but not under the new one.
Let h be such a pixel. Since h is hot under old snap
rounding, but not external for any ursegment, there
must exist two or more ursegments that are hot in h;
call this set Q. Let R be the set of any remaining urseg-
ments that intersect h.

Let b be the vertical bisector of h. By lemma 1, the
polysegments for Q contain b, so s1 and s2 cannot both
belong to Q; and the continuous deformation can be
used to prove that s1 and s2 cannot both belong to
R. Therefore, without loss of generality we can assume
s1 ∈ Q and s2 ∈ R, and that the proper intersection in
question must lie on b.

Let c be the column of pixels containing h. We now
show that s2 cannot be snapped to any pixel in h′ ∈ c.
First, h′ 6= h, by the definition of set R and the fact that
h is not external with respect to any ursegments. If h′

is some other pixel in c, then due to the monotonicity
of the polysegment for s2, it cannot have a proper inter-
section with b, a contradiction. By the same reasoning,
we see that s2 cannot have an endpoint in c. Thus s2

must cross c from left to right.
Lemma 1 can be used to show that every ursegment

q ∈ Q must be associated with two hot pixels in c that
are external with respect to q, and that lie on opposite

sides of h. Let h1 and h2 be such a pair of hot pixels
for some q. Since these are hot pixels under the new
definition as well, s2 cannot intersect either of them;
otherwise, s2 would be snapped to them, and we know
s2 is not snapped to any pixel in c.

Since s2 intersects h, and s2 does not intersect h1 or
h2, s2 must cross the stack of pixels between h1 and
h2 from left to right. But then s2 must intersect q,
causing s2 to be snapped to one of these pixels within
c; a contradiction. �

Theorem 3 Using the new definition of snap rounding,
a set of n ursegments produces O(n) hot pixels in any
one column.

3 Algorithm One

We first present an algorithm that given a set of urseg-
ments as input, generates the polysegments of this set.
It performs a single vertical sweep of the plane by a strip
of unit width, stopping only at integer coordinates.

For simplicity, we assume no ursegment is vertical or
has length zero. These special cases can be dealt with
easily; we omit the details for lack of space.

One of the strengths of our algorithm is that we never
need to clip an ursegment to a pixel boundary, a pro-
cedure requiring high precision. We also don’t need to
calculate the exact intersection point of two ursegments,
only the pixel containing that point (which can be cal-
culated and represented using integers only). We will
show that we can still detect and process every such in-
tersection point when stopping the sweep strip only at
column boundaries.

Actually, we need to stop at the centerline of the
columns as well, since segments will start and stop at
points on these lines. To allow this, we stretch each
ursegment horizontally:

x′ = 2x + 1 (1)

A half pixel H(x, y) is the set of all points (a, b) ∈ R2

such that x ≤ a < x + 1 and y − 1
2 ≤ b < y + 1

2 , for
x, y ∈ Z. In words, it is the unit square centered at
(x + 1

2 , y), excluding the top and right boundary edges.
A full pixel is a pair of half pixels {H(x, y),H(x + 1, y)}
where x = 2 · i∈Z. It follows that a full pixel is hot iff ei-
ther of its component half pixels contains an ursegment
intersection or endpoint. Equation (1) allows each orig-
inal full pixel to be represented by two half pixels, each
with integer coordinates. Note that the vertical sides of
the full pixels and the ursegment endpoints lie on the
vertical sides of the half pixels.

A sweep column at x = x′ is the column of half pixels
{H(x, y) | x = x′}, and is denoted W (x′). A snap col-
umn at x = 2 · i∈Z is the pair of adjacent sweep columns
{W (x),W (x + 1)}.

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Our algorithm performs a modified vertical Bentley
and Ottman [1] plane sweep with a strip, stopping at
a sweep column if an ursegment endpoint is within the
column, or if ursegments that are neighbors in the active
list intersect within the column.

We must specify a total order relation to order the
ursegments within the active list. Let x be the po-
sition of the sweep column. Observe that the order-
ing of parallel ursegments does not depend upon x,
and is thus trivial to calculate. For other pairs of
ursegments (s1, s2), we calculate h, the pixel containing
their intersection point, and define the function upper
which returns the ursegment that contains the upper
of the two portions of the ursegments that lie to the
left of the pixel column containing h. We then define
the ordering relation >x as follows (⊕ is exclusive or):
s1 >x s2 ≡ (upper(s1, s2) = s1)⊕ (hx < x).

We augment each ursegment with three additional
fields. The heatRange field records the highest and low-
est hot pixels known to intersect the ursegment within
the current snap column. We say we are adding a pixel
to a ursegment’s heatRange to mean that we are ini-
tializing or expanding the range as necessary to include
the new pixel. The heatAbove and heatBelow fields
are pointers to other ursegments, and their purpose is
explained later.

There are three sequential processes that occur within
a snap column: the sweep process, the hot pixel process,
and the snap process.

3.1 The sweep process

When the sweep stops at a new snap column, we ini-
tialize a snap set of ursegments to the empty set. This
set will contain ursegments that are hot within the snap
column, as well as any ursegments that are ever adjacent
to such ursegments within the active list.

We add each ursegment that is stopping at the sweep
column’s left edge to the snap set, remove it from
the active list, and add its stopping endpoint to its
heatRange.

We perform a similar procedure for each ursegment
that is starting at the current sweep column’s left edge:
we insert it into the active list, add it to the snap set,
and add its starting point to its heatRange.

We next query the event queue for all seed events:
currently known intersection events occuring in the cur-
rent sweep column. After pushing these events onto
a stack, we pop each event, and test if it represents
ursegments that are still neighbors within the active
list. If not, we ignore the event (this pair will even-
tually become neighbors again, and will be processed
then). Otherwise, we add the pixel containing their in-
tersection point to both ursegment’s heatRange fields,
add the ursegments to the snap set, and exchange their
positions within the active list. We test for intersection

events that will occur between the ursegments and their
new neighbors, and if the intersection point will occur
within the current sweep column, we add the event to
the stack. If the stack is not yet empty, we pop an-
other event and repeat. Once all stacked intersections
have been processed, the active list will be in the correct
order for the right side of the current sweep column.

Whenever we process a hot pixel h for a segment s′

with an active list neighbor s, we take some additional
actions that will aid us in finding warm ursegments
later. First, if s.heatRange is defined, we do nothing,
since s is known to be hot. Otherwise, if s′ is below
s, then if s.heatBelow is undefined or has a heatRange
that ends below that of s′, we make s.heatBelow point
to s′. We perform a similar action if s′ is above s and
s.heatAbove has a heatRange that starts above that of
s′.

If the next intersection or endpoint event to be re-
ported will occur within the same snap column, we re-
peat the sweep process (retaining the contents of the
snap set). Otherwise, we continue with the hot pixel
process.

3.2 The hot pixel process

Every ursegment in the snap set with a defined
heatRange field will be exactly those ursegments that
are hot within the column. We construct a linked list
of unique hot pixels, sorted by y, from these heatRange
fields. For quick access during the snap process, we re-
place each heatRange field’s hot pixels with their cor-
responding pointers into this list.

Every hot ursegment may have exchanged positions
within the active list, so we have the tree predict inter-
section events for these ursegments, in preparation for
the next sweep process.

3.3 The snap process

We first process every hot ursegment by examining
every ursegment s in the snap set with a defined
heatRange field. As a result of the previous process,
s will have at least one pointer to a pixel within the hot
pixel list that it should be snapped to. We can iterate
above and below this pixel to find all pixels that are
warm or hot for s, snapping s to each (and expanding
s.heatRange) as we go.

Next, we process every potentially warm urseg-
ment by examining those ursegments s with undefined
heatRange fields. The heatAbove and heatBelow fields,
if defined, will point to the segment s′ with the nearest
hot pixel to either side of s. If s intersects s′.heatRange,
then one of the two hot pixels in s′.heatRange will be
warm for s and can be used as a starting point to it-
erate through all the pixels that are warm for s. We
snap s to these pixels, add the pixels to s.heatRange,

19th Canadian Conference on Computational Geometry, 2007

and recursively repeat this procedure with each (cold)
neighbor of s, using s as the ‘heat source’.

Once a snap column is processed, we reinitialize any
ursegment fields that were modified, in preparation for
processing another column.

4 Performance

Our algorithm uses a variant of a B+ tree to store the
active list of ursegments that intersect the sweep col-
umn, ordered by the position of their intersections along
the sweep column. The tree supports O(log n) inser-
tion, deletion, and search operations, and O(1) traversal
through the active list. The intersection events are also
stored within this tree. We use a separate tree to store
the ursegment endpoint events.

The seed events reported by the tree during the sweep
process each require at most O(log n) time. Note that
an ursegment can occur in at most two seed events,
so the cost of extracting all such events for a sweep
column c is O(is(c) log n), where is(c) is the number of
ursegments that are hot within c. Note also that the
O(log n) cost of processing each endpoint event can be
included in this term.

We can exchange ursegments within the active list in
O(1) time if we associate each ursegment with a pointer
and access the ursegments via these pointers; we omit
the details for brevity.

The number of exchanges that occur during all sweep
processes is bounded by |I|, so the running time for the
sweep processes aggregated over every sweep column is
O(|I|+ Σc is(c) log n).

The hot pixel process sorts the hot pixels; by theo-
rem 3, there are O(is(c)) such hot pixels, so this cost
can be included in that of the sweep process. For each of
the is(c) intersecting segments, the tree spends O(log n)
recalculating intersection events (details are omitted for
lack of space), so this cost can also be included in the
sweep process.

The snap process spends O(1) time generating each
polysegment fragment. Since I∗m is the set of all such
fragments, the running time of the complete algorithm
is O(|I|+ Σc is(c) log n + |I∗m|).

5 Algorithm Two

As observed in [6], |I∗m| can be as much as Θ(n3). Our
second algorithm uses a similar approach to that of [2] to
generate I∗, the rounded arrangement of the ursegments
instead of their individual polysegments.

We perform three plane sweeps. The first is a vertical
sweep to find the set of hot pixels, and is simply the first
algorithm with the snap process omitted.

We partition the ursegments into two sets: those with
slopes m between −1 and 1, and those whose slopes are

outside of this range. The second sweep is a vertical
sweep that includes all hot pixels and the ursegments
from the first set, while the third sweep is a horizontal
sweep which includes the hot pixels and the ursegments
from the second set.

We organize the ursegments into bundles, generate an
arc between hot pixels where a bundle intersects the hot
pixels, and split the bundles as necessary at hot pixels.
Using bundles in this way imposes a logarithmic cost on
each arc generated, which results in a running time of
O(|I|+ Σc is(c) log n + |I∗| log n).

6 Conclusion

We have presented two algorithms to perform snap
rounding. Both use simple integer arithmetic, are ro-
bust, are practical to implement, and are easily adapted
for segments whose endpoints are rational numbers.
They improve upon existing algorithms, since existing
running times either include a logarithmic factor in |I|,
or depend upon the number of segments interacting
within a particular hot pixel, whereas ours are linear
in |I| and depend upon the number of segments inter-
acting in an entire hot column, a much coarser partition
of the plane.

An applet demonstrating both algorithms is available
at http://www.sfu.ca/~jpsember/snap.html.

References

[1] J. L. Bentley and T. Ottman. Algorithms for report-
ing and counting geometric intersections. IEEE Trans.
Comput., C-28:643–647, 1979.

[2] M. de Berg, D. Halperin, and M. Overmars. An
intersection-sensitive algorithm for snap rounding.
Comp. Geom.: Theory and Appl., 36:159-165, 2007.

[3] M. T. Goodrich, L. J. Guibas, J. Hershberger, and P. J.
Tanenbaum. Snap rounding line segments efficiently in
two and three dimensions. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., 284–293, 1997.

[4] D.H. Greene. Integer line segment intersection. Unpub-
lished manuscript.

[5] L. J. Guibas and D. H. Marimont. Rounding arrange-
ments dynamically. In Proc. 11th Annu. ACM Sympos.
Comput. Geom., 190–199, 1995.

[6] D. Halperin and E. Packer. Iterated snap rounding.
Comp. Geom.: Theory and Appl., 23:209–225, 2002.

[7] J. Hershberger. Improved output-sensitive snap round-
ing. In Proc. 22nd Annu. ACM Sympos. Comput.
Geom., 357–366, 2006.

[8] J. D. Hobby. Practical segment intersection with finite
precision output. Comp. Geom.: Theory and Appl.,
13:199–214, 1999.

[9] E. Packer. Iterated snap rounding with bounded drift.
In Proc. 22nd Annu. ACM Sympos. Comput. Geom.,
367–376, 2006.

